Calculus 2: Integration
Test your understanding of integration techniques in Calculus 2, including substitution, integration by parts, partial fractions, and applications of definite integrals.
1 / 26
The derivative of
f(x)=sin−1(3x)f(x) = sin^{-1}(3x)
is:
Use the chain rule:
ddxsin−1(u)=u′1−u2frac{d}{dx} sin^{-1}(u) = frac{u’}{sqrt{1 – u^2}}
, where
u=3xu = 3x
.
2 / 26
If
y=ln(secx+tanx)y = ln(sec x + tan x)
, then
dydxfrac{dy}{dx}
Differentiate using the chain rule and simplify.
3 / 26
f(x)=xxf(x) = x^x
Rewrite
xx=exlnxx^x = e^{x ln x}
, then differentiate using the chain rule.
4 / 26
f(x)=tanh−1(x)f(x) = tanh^{-1}(x)
Standard derivative of inverse hyperbolic tangent.
5 / 26
y=exsinxy = e^{x sin x}
Apply the chain rule and product rule.
6 / 26
f(x)=lnxx2f(x) = frac{ln x}{x^2}
Use the quotient rule:
ddx(uv)=u′v−uv′v2frac{d}{dx} left( frac{u}{v} right) = frac{u’v – uv’}{v^2}
7 / 26
f(x)=x+xf(x) = sqrt{x + sqrt{x}}
f′(x)f'(x)
Apply the chain rule twice.
8 / 26
f(x)=sec−1(x2)f(x) = sec^{-1}(x^2)
Use the chain rule and derivative of
sec−1(u)sec^{-1}(u)
9 / 26
y=cosh(2x)y = cosh(2x)
d2ydx2frac{d^2y}{dx^2}
First derivative is
2sinh(2x)2 sinh(2x)
, second derivative is
4cosh(2x)4 cosh(2x)
10 / 26
x=t2x = t^2
and
y=t3y = t^3
dydx=dy/dtdx/dt=3t22t=3t2frac{dy}{dx} = frac{dy/dt}{dx/dt} = frac{3t^2}{2t} = frac{3t}{2}
11 / 26
For the curve
x2+y2=25x^2 + y^2 = 25
,
Differentiate implicitly:
2x+2ydydx=02x + 2y frac{dy}{dx} = 0
12 / 26
y=sin(xy)y = sin(xy)
Differentiate implicitly and solve for
13 / 26
For parametric equations
x=etx = e^t
y=tety = t e^t
First find
dydx=1+tetfrac{dy}{dx} = frac{1 + t}{e^t}
, then differentiate again.
14 / 26
The slope of the tangent to the curve
x3+y3=9x^3 + y^3 = 9
at
(2,1)(2, 1)
Differentiate implicitly and substitute
15 / 26
yy
is defined implicitly by
x2y+y2x=6x^2 y + y^2 x = 6
(1,2)(1, 2)
16 / 26
For
x=cosθx = cos theta
y=sinθy = sin theta
Compute
dydx=−cotθfrac{dy}{dx} = -cot theta
17 / 26
The derivative
for
ln(xy)=x+yln(xy) = x + y
18 / 26
x=t−sintx = t – sin t
y=1−costy = 1 – cos t
dydx=dy/dtdx/dt=sint1−costfrac{dy}{dx} = frac{dy/dt}{dx/dt} = frac{sin t}{1 – cos t}
19 / 26
The second derivative
y2=4xy^2 = 4x
Differentiate implicitly twice.
20 / 26
The derivative dydxfrac{dy}{dx} for y=xxxy = x^{x^x} is best found using:
Take the natural logarithm of both sides to simplify differentiation.
21 / 26
The family of curves orthogonal to
y=Cx2y = Cx^2
Orthogonal trajectories satisfy
dydx=−1f′(x)frac{dy}{dx} = -frac{1}{f'(x)}
22 / 26
y=(sinx)lnxy = (sin x)^{ln x}
Use logarithmic differentiation.
23 / 26
f(x)=∫0xet2dtf(x) = int_0^x e^{t^2} dt
By the Fundamental Theorem of Calculus,
ddx∫axf(t)dt=f(x)frac{d}{dx} int_a^x f(t) dt = f(x)
24 / 26
y=tan−1(sinhx)y = tan^{-1}(sinh x)
tan−1(u)tan^{-1}(u)
25 / 26
f(x)=xa2−x2f(x) = frac{x}{sqrt{a^2 – x^2}}
Use the quotient rule and simplify.
26 / 26
f(x)=ex−e−xex+e−xf(x) = frac{e^x – e^{-x}}{e^x + e^{-x}}
Recognize
f(x)=tanhxf(x) = tanh x
, whose derivative is
sech2x=1−tanh2xtext{sech}^2 x = 1 – tanh^2 x
Your score is
Restart quiz Exit