INTRODUCTION TO APPLIED STATISTICS

Tutorial Sheet 2

DATE : October 26, 2016



Question 1: Define the following terms

(i) Parameter: A numerical value that describes a characteristic of a population. For example, the population mean (denoted as μ).
(ii) Statistic: A numerical value that describes a characteristic of a sample. For example, the sample mean (denoted as xˉ\bar{x}).
(iii) Sample space: The set of all possible outcomes of a random experiment, denoted as SS. For a coin flip, S={H,T}S = \{H, T\}.
(iv) An Event: A subset of the sample space. It represents one or more outcomes of an experiment. For example, getting a head in a coin flip is an event.
(v) A random Variable: A variable whose values are numerical outcomes of a random phenomenon. It can be discrete (e.g., number of heads) or continuous (e.g., height).


Question 2

a) A fair coin is to be flipped four times. Determine the sample space SS.

  • Each flip has 2 outcomes (H = Head, T = Tail).
  • Total outcomes: 24=162^4 = 16.
  • S={S = \{HHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTHT, HTTH, THHT, THTH, TTHH, HTTT, THTT, TTHT, TTTH, TTTT}\}.

b) Find the probability of observing each event (fair coin, P(H)=P(T)=0.5P(H) = P(T) = 0.5:
(i) Exactly 1 head:

  • Favorable outcomes: HTTT, THTT, TTHT, TTTH (4 outcomes).
  • P=416=14=0.25P = \frac{4}{16} = \frac{1}{4} = 0.25.
    (ii) At least 1 head:
  • Complement: no heads (all tails) = {TTTT} (1 outcome).
  • P=1116=1516=0.9375P = 1 - \frac{1}{16} = \frac{15}{16} = 0.9375.
    (iii) No more than 2 heads:
  • 0 heads: {TTTT} (1), 1 head: 4 outcomes, 2 heads: C(4,2) = 6 outcomes (e.g., HHTT).
  • Total favorable: 1+4+6=111 + 4 + 6 = 11.
  • P=1116=0.6875P = \frac{11}{16} = 0.6875.
    (iv) Either no tail or no head:
  • No tail = all heads {HHHH}, no head = all tails {TTTT}.
  • P=216=18=0.125P = \frac{2}{16} = \frac{1}{8} = 0.125.
    (v) At least both a head and a tail:
  • Exclude all heads and all tails: 162=1416 - 2 = 14 outcomes.
  • P=1416=78=0.875P = \frac{14}{16} = \frac{7}{8} = 0.875.
    (vi) More than 4 heads:
  • Maximum heads is 4.
  • P=0P = 0.
    (vii) At most 4 tails:
  • Maximum tails is 4 (covers all outcomes).
  • P=1616=1P = \frac{16}{16} = 1.

c) Biased coin (P(H)=25=0.4P(H) = \frac{2}{5} = 0.4, P(T)=35=0.6P(T) = \frac{3}{5} = 0.6):

  • Use binomial distribution: XBinomial(n=4,p=0.4)X \sim \text{Binomial}(n=4, p=0.4), where X=X = number of heads.
  • P(X=k)=(4k)(0.4)k(0.6)4kP(X = k) = \binom{4}{k} (0.4)^k (0.6)^{4-k}.
    (i) Exactly 1 head: P(X=1)=(41)(0.4)1(0.6)3=4×0.4×0.216=0.3456.P(X=1) = \binom{4}{1} (0.4)^1 (0.6)^3 = 4 \times 0.4 \times 0.216 = 0.3456.

(ii) At least 1 head:

P(X1)=1P(X=0)=1(0.6)4=10.1296=0.8704.P(X \geq 1) = 1 - P(X=0) = 1 - (0.6)^4 = 1 - 0.1296 = 0.8704.

(iii) No more than 2 heads:

P(X2)=P(X=0)+P(X=1)+P(X=2)=(0.6)4+4×0.4×(0.6)3+(42)(0.4)2(0.6)2=0.1296+0.3456+0.3456=0.8208.P(X \leq 2) = P(X=0) + P(X=1) + P(X=2) = (0.6)^4 + 4 \times 0.4 \times (0.6)^3 + \binom{4}{2} (0.4)^2 (0.6)^2 = 0.1296 + 0.3456 + 0.3456 = 0.8208.

(iv) Either no tail or no head:

P(all heads)=(0.4)4=0.0256,P(all tails)=(0.6)4=0.1296,P=0.0256+0.1296=0.1552.P(\text{all heads}) = (0.4)^4 = 0.0256, \quad P(\text{all tails}) = (0.6)^4 = 0.1296, \quad P = 0.0256 + 0.1296 = 0.1552.

(v) At least both a head and a tail:

P=1(0.0256+0.1296)=10.1552=0.8448.P = 1 - (0.0256 + 0.1296) = 1 - 0.1552 = 0.8448.

(vi) More than 4 heads: P=0P = 0.
(vii) At most 4 tails: P=1P = 1.


Question 3: A fair die is tossed twice. Find the probability of observing:

  • Sample space: 6×6=366 \times 6 = 36 equally likely outcomes.
    (i) Odd number on first toss:
    • Odd numbers: 1,3,5 (3 outcomes).
    • P=3×636=1836=0.5P = \frac{3 \times 6}{36} = \frac{18}{36} = 0.5.
      (ii) Prime number on both tosses:
    • Primes: 2,3,5 (3 outcomes per toss).
    • P=3×336=936=0.25P = \frac{3 \times 3}{36} = \frac{9}{36} = 0.25.
      (iii) A 2 and a 5:
    • Outcomes: (2,5), (5,2).
    • P=236=1180.0556P = \frac{2}{36} = \frac{1}{18} \approx 0.0556.
      (iv) A 3 or 6 (interpreted as on the first toss):
    • First toss: 3 or 6 (2 outcomes).
    • P=2×636=1236=130.3333P = \frac{2 \times 6}{36} = \frac{12}{36} = \frac{1}{3} \approx 0.3333.
      (v) Even on first toss and 1 on second:
    • Even: 2,4,6 (3 outcomes), second: 1 (1 outcome).
    • P=3×136=336=1120.0833P = \frac{3 \times 1}{36} = \frac{3}{36} = \frac{1}{12} \approx 0.0833.
      (vi) Numbers whose product is 12:
    • Outcomes: (2,6), (3,4), (4,3), (6,2).
    • P=436=190.1111P = \frac{4}{36} = \frac{1}{9} \approx 0.1111.

Question 4: A small clinic has only 8 bed spaces. If 14 patients are brought in, in how many possible ways can these patients be accommodated (one per bed)?

  • Select 8 patients out of 14 and assign to distinct beds: (148)×8!=14!6!=14×13×12×11×10×9×8×7=121,080,960.\binom{14}{8} \times 8! = \frac{14!}{6!} = 14 \times 13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 = 121{,}080{,}960.

Question 5: In how many ways can a committee of 7 be selected from 30 individuals?

  • Order does not matter (combination): (307)=30!7!×23!=30×29×28×27×26×25×247×6×5×4×3×2×1=2,035,800.\binom{30}{7} = \frac{30!}{7! \times 23!} = \frac{30 \times 29 \times 28 \times 27 \times 26 \times 25 \times 24}{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} = 2{,}035{,}800.

Question 6

a) Patients with symptoms: 25% strep throat (S), 40% allergy (A), 10% both.
(i) P(S)=0.25P(S) = 0.25.
(ii) P(A)=0.40P(A) = 0.40.
(iii) P(S or A)=P(S)+P(A)P(S and A)=0.25+0.400.10=0.55P(S \text{ or } A) = P(S) + P(A) - P(S \text{ and } A) = 0.25 + 0.40 - 0.10 = 0.55.
b) Independence and mutual exclusivity:

  • Independent? P(S and A)=0.10P(S \text{ and } A) = 0.10, P(S)×P(A)=0.25×0.40=0.10P(S) \times P(A) = 0.25 \times 0.40 = 0.10. Yes, independent.
  • Mutually exclusive? P(S and A)=0.100P(S \text{ and } A) = 0.10 \neq 0. No, not mutually exclusive.

Question 7: Select 5 children from 11 (4 males, 7 females).

a) Different selections:

(115)=11!5!×6!=462.\binom{11}{5} = \frac{11!}{5! \times 6!} = 462.

b) 2 males and 3 females:

(42)×(73)=6×35=210.\binom{4}{2} \times \binom{7}{3} = 6 \times 35 = 210.


Question 8: Virus present in 1.4% of population. Test accuracy: P(positivevirus)=0.995P(\text{positive} \mid \text{virus}) = 0.995, P(positiveno virus)=0.01P(\text{positive} \mid \text{no virus}) = 0.01.

Let VV = has virus, T+T^+ = test positive.

  • P(V)=0.014P(V) = 0.014, P(Vc)=0.986P(V^c) = 0.986.
    a) P(no virus)=P(Vc)=0.986P(\text{no virus}) = P(V^c) = 0.986.
    b) P(test negativeindividual has virus)=10.995=0.005P(\text{test negative} \mid \text{individual has virus}) = 1 - 0.995 = 0.005.
    c) P(test negativeindividual no virus)=10.01=0.99P(\text{test negative} \mid \text{individual no virus}) = 1 - 0.01 = 0.99.
    d) P(test positive)P(\text{test positive}):

P(T+)=P(T+V)P(V)+P(T+Vc)P(Vc)=(0.995×0.014)+(0.01×0.986)=0.01393+0.00986=0.02379.P(T^+) = P(T^+ \mid V)P(V) + P(T^+ \mid V^c)P(V^c) = (0.995 \times 0.014) + (0.01 \times 0.986) = 0.01393 + 0.00986 = 0.02379.

e) If test positive:
(i) P(VT+)=P(T+V)P(V)P(T+)=0.013930.023790.5855P(V \mid T^+) = \frac{P(T^+ \mid V)P(V)}{P(T^+)} = \frac{0.01393}{0.02379} \approx 0.5855.
(ii) P(VcT+)=10.5855=0.4145P(V^c \mid T^+) = 1 - 0.5855 = 0.4145.
f) If test negative:
(i) P(VT)=P(TV)P(V)P(T)=0.005×0.01410.02379=0.000070.976210.0000717P(V \mid T^-) = \frac{P(T^- \mid V)P(V)}{P(T^-)} = \frac{0.005 \times 0.014}{1 - 0.02379} = \frac{0.00007}{0.97621} \approx 0.0000717.
(ii) P(VcT)=10.00007170.9999283P(V^c \mid T^-) = 1 - 0.0000717 \approx 0.9999283.


Question 9: Same as Question 4

  • Answer: 121,080,960121{,}080{,}960 ways.

Question 10: Same as Question 5

  • Answer: 2,035,8002{,}035{,}800 ways.

Question 11: Probability of male birth = 0.52. Family has 12 children.

  • XBinomial(n=12,p=0.52)X \sim \text{Binomial}(n=12, p=0.52), X=X = number of boys.
    a)
    (i) P(X=3)=(123)(0.52)3(0.48)90.0418P(X=3) = \binom{12}{3} (0.52)^3 (0.48)^9 \approx 0.0418.
    (ii) P(X=10)=(1210)(0.52)10(0.48)20.0220P(X=10) = \binom{12}{10} (0.52)^{10} (0.48)^2 \approx 0.0220.
    (iii) P(X10)=P(X=10)+P(X=11)+P(X=12)0.0220+0.0043+0.0004=0.0267P(X \geq 10) = P(X=10) + P(X=11) + P(X=12) \approx 0.0220 + 0.0043 + 0.0004 = 0.0267.
    (iv) More than half girls (girls > 6, i.e., boys 5\leq 5): P(X5)0.3343(sum of P(X=0) to P(X=5)).P(X \leq 5) \approx 0.3343 \quad (\text{sum of } P(X=0) \text{ to } P(X=5)).

(v) At most 7 girls (boys 5\geq 5):

P(X5)0.8425.P(X \geq 5) \approx 0.8425.

(vi) At least 5 boys: P(X5)0.8425P(X \geq 5) \approx 0.8425.
(vii) At most 9 girls (boys 3\geq 3):

P(X3)0.9863.P(X \geq 3) \approx 0.9863.

(viii) All girls: P(X=0)=(0.48)120.00015P(X=0) = (0.48)^{12} \approx 0.00015.
b) Expected number of sons:

E[X]=np=12×0.52=6.24.E[X] = n p = 12 \times 0.52 = 6.24.

  • Interpretation: Long-run average number of sons per family with 12 children.

Question 12: Probability drug reaches market = 0.12. Firm has 15 compounds.

  • XBinomial(n=15,p=0.12)X \sim \text{Binomial}(n=15, p=0.12).
    a)
    (i) None reach market: P(X=0)=(0.88)150.1470P(X=0) = (0.88)^{15} \approx 0.1470.
    (ii) One or more: P(X1)=10.1470=0.8530P(X \geq 1) = 1 - 0.1470 = 0.8530.
    (iii) At most 10: P(X10)1P(X \leq 10) \approx 1 (since mean =15×0.12=1.8= 15 \times 0.12 = 1.8, right tail negligible).
    (iv) Exactly half (7.5): Impossible, P=0P = 0.
    (v) Between 8 and 13: P(8X13)0P(8 \leq X \leq 13) \approx 0 (negligible).
    b) Expected value and variance:

E[X]=np=15×0.12=1.8,Var(X)=np(1p)=15×0.12×0.88=1.584.E[X] = n p = 15 \times 0.12 = 1.8, \quad \text{Var}(X) = n p (1-p) = 15 \times 0.12 \times 0.88 = 1.584.

  • Comment: Expected 1.8 drugs reach market, with moderate variability.

Question 13: ZN(0,1)Z \sim N(0,1).

a) Probabilities:
(i) P(Z1.49)=Φ(1.49)0.9319P(Z \leq 1.49) = \Phi(1.49) \approx 0.9319.
(ii) P(Z<1.49)=Φ(1.49)0.0681P(Z < -1.49) = \Phi(-1.49) \approx 0.0681.
(iii) P(Z2)=1Φ(2)0.0228P(Z \geq 2) = 1 - \Phi(2) \approx 0.0228.
(iv) P(2.5Z)=Φ(2.5)0.9938P(-2.5 \leq Z) = \Phi(2.5) \approx 0.9938 (since symmetric).
(iv) P(Z<1.2)=2Φ(1.2)12×0.88491=0.7698P(|Z| < 1.2) = 2\Phi(1.2) - 1 \approx 2 \times 0.8849 - 1 = 0.7698.
(v) P(Z>3.5)1P(Z > -3.5) \approx 1.
(vi) P(1.5Z<3)=Φ(3)Φ(1.5)0.99870.9332=0.0655P(1.5 \leq Z < 3) = \Phi(3) - \Phi(1.5) \approx 0.9987 - 0.9332 = 0.0655.
(vii) P(1Z<2.5)=Φ(2.5)Φ(1)0.99380.1587=0.8351P(-1 \leq Z < 2.5) = \Phi(2.5) - \Phi(-1) \approx 0.9938 - 0.1587 = 0.8351.
(viii) P(1.8Z<1.8)=2Φ(1.8)12×0.96411=0.9282P(-1.8 \leq Z < 1.8) = 2\Phi(1.8) - 1 \approx 2 \times 0.9641 - 1 = 0.9282.
b) Find zz:
(i) P(Z<z)=0.1762P(Z < z) = 0.1762: z0.93z \approx -0.93.
(ii) P(Z>z)=0.80P(Z > z) = 0.80P(Z<z)=0.20P(Z < z) = 0.20: z0.84z \approx -0.84.
(iii) P(z<Z<z)=0.954P(-z < Z < z) = 0.954P(Z<z)=0.977P(Z < z) = 0.977: z=2.00z = 2.00.
(iv) P(6Z<z)=0.5P(-6 \leq Z < z) = 0.5z0z \approx 0 (since P(Z<6)0P(Z < -6) \approx 0).


Question 14: XN(60,4)X \sim N(60, 4) (mean 60, variance 4, std dev 2).

a) Probabilities:
(i) P(55X63)=P(2.5Z1.5)0.9270P(55 \leq X \leq 63) = P(-2.5 \leq Z \leq 1.5) \approx 0.9270.
(ii) P(X<70)=P(Z<5)1P(X < 70) = P(Z < 5) \approx 1.
(iii) P(X61)=P(Z0.5)0.3085P(X \geq 61) = P(Z \geq 0.5) \approx 0.3085.
(iv) P(X60.8)=P(Z0.4)0.6554P(X \leq 60.8) = P(Z \leq 0.4) \approx 0.6554.
(iv) P(57.8<X)=P(Z>1.1)0.8643P(57.8 < X) = P(Z > -1.1) \approx 0.8643.
b) Find xx (1 decimal place):
(i) P(X<x)=0.84P(X < x) = 0.84z=0.99z = 0.99, x=60+0.99×2=62.0x = 60 + 0.99 \times 2 = 62.0.
(ii) P(X>x)=0.8664P(X > x) = 0.8664P(X<x)=0.1336P(X < x) = 0.1336, z1.11z \approx -1.11, x=601.11×2=57.8x = 60 - 1.11 \times 2 = 57.8.
(iii) P(53<Xx)=0.9P(53 < X \leq x) = 0.9x62.6x \approx 62.6.
(iv) P(xX<66)=0.5P(x \leq X < 66) = 0.5x60.0x \approx 60.0.


Question 15: Heights of 2-year-old boys N(34.5,1.42)\sim N(34.5, 1.4^2).

(i) Between 32.5 and 36.5:

P(32.5<X<36.5)=P(1.4286<Z<1.4286)0.8468.P(32.5 < X < 36.5) = P(-1.4286 < Z < 1.4286) \approx 0.8468.

(ii) Less than 31:

P(X<31)=P(Z<2.5)0.0062.P(X < 31) = P(Z < -2.5) \approx 0.0062.

(iii) More than 37.5:

P(X>37.5)=P(Z>2.1429)0.0162.P(X > 37.5) = P(Z > 2.1429) \approx 0.0162.

(iv) Between 31.5 and 35:

P(31.5<X<35)=P(2.1429<Z<0.3571)0.6234.P(31.5 < X < 35) = P(-2.1429 < Z < 0.3571) \approx 0.6234.

@Dr. Microbiota


End of Solutions