INTRODUCTION TO APPLIED STATISTICS QUIZ 3

DATE : 18th OCTOBER, 2024



Question 1

Find the expected value for a discrete random variable defined by
p(x)=x10, where x=1,2,3,4.p(x) = \frac{x}{10}, \text{ where } x = 1, 2, 3, 4.
A. 1.12
B. 3.00
C. 4.20
D. 2.50

Answer: B. 3.00

Explanation:
The expected value E(X)E(X) for a discrete random variable is calculated as:

E(X)=[xp(x)]E(X) = \sum [x \cdot p(x)]

Substitute the values:

  • x=1x = 1: 1110=0.11 \cdot \frac{1}{10} = 0.1
  • x=2x = 2: 2210=0.42 \cdot \frac{2}{10} = 0.4
  • x=3x = 3: 3310=0.93 \cdot \frac{3}{10} = 0.9
  • x=4x = 4: 4410=1.64 \cdot \frac{4}{10} = 1.6
    Sum:

E(X)=0.1+0.4+0.9+1.6=3.0E(X) = 0.1 + 0.4 + 0.9 + 1.6 = 3.0

Thus, the expected value is 3.00.


Question 2

One of the following is not true about discrete random variable. Which one is it?
A. The probabilities are non-negative
B. The sum of all probabilities for the given variable must be 1
C. All probabilities must be between 0 and 1
D. The given values of xx must be consecutive

Answer: D. The given values of xx must be consecutive

Explanation:
For a discrete random variable:

  • Probabilities are non-negative (A is true).
  • Sum of probabilities is 1 (B is true).
  • Each probability 0p(x)10 \leq p(x) \leq 1 (C is true).
  • Values of xx need not be consecutive; they can be any discrete set (e.g., x=1,3,5x = 1, 3, 5) (D is false).

Question 3

The table below gives the distribution of a random variable XX.

XX 1 2 3 4 5 6
P(X=x) 0.21 0.12 a 2a 0.21 0.01
What is the standard deviation of this variable XX?
A. 0.150
B. 3.210
C. 1.465
D. 2.146

Answer: C. 1.465

Explanation:
Step 1: Find aa
Sum of probabilities must be 1:

0.21+0.12+a+2a+0.21+0.01=1

0.21 + 0.12 + a + 2a + 0.21 + 0.01 = 1 0.55+3a=1    3a=0.45    a=0.150.55 + 3a = 1 \implies 3a = 0.45 \implies a = 0.15

Thus, probabilities are:

  • x=3x=3: a=0.15a = 0.15
  • x=4x=4: 2a=0.302a = 0.30

Step 2: Calculate E(X)E(X)

E(X)=[xP(x)]=1(0.21)+2(0.12)+3(0.15)+4(0.30)+5(0.21)+6(0.01)

E(X) = \sum [x \cdot P(x)] = 1(0.21) + 2(0.12) + 3(0.15) + 4(0.30) + 5(0.21) + 6(0.01) =0.21+0.24+0.45+1.20+1.05+0.06=3.21= 0.21 + 0.24 + 0.45 + 1.20 + 1.05 + 0.06 = 3.21

Step 3: Calculate E(X2)E(X^2)

E(X2)=[x2P(x)]=12(0.21)+22(0.12)+32(0.15)+42(0.30)+52(0.21)+62(0.01)E(X^2) = \sum [x^2 \cdot P(x)] = 1^2(0.21) + 2^2(0.12) + 3^2(0.15) + 4^2(0.30) + 5^2(0.21) + 6^2(0.01) =1(0.21)+4(0.12)+9(0.15)+16(0.30)+25(0.21)+36(0.01)=0.21+0.48+1.35+4.80+5.25+0.36=12.45= 1(0.21) + 4(0.12) + 9(0.15) + 16(0.30) + 25(0.21) + 36(0.01) = 0.21 + 0.48 + 1.35 + 4.80 + 5.25 + 0.36 = 12.45

Step 4: Variance σ2\sigma^2

σ2=E(X2)[E(X)]2=12.45(3.21)2=12.4510.3041=2.1459\sigma^2 = E(X^2) - [E(X)]^2 = 12.45 - (3.21)^2 = 12.45 - 10.3041 = 2.1459

Step 5: Standard deviation σ\sigma

σ=2.14591.46471.465\sigma = \sqrt{2.1459} \approx 1.4647 \approx 1.465


Question 4

The random variable XX has probability function:

P(X=x)={kxfor x=1,2,3k(x+1)for x=4,5P(X = x) = \begin{cases} kx & \text{for } x = 1,2,3 \\ k(x + 1) & \text{for } x = 4,5 \end{cases}

where kk is a constant. Find the value of kk.
A. 115\frac{1}{15}
B. 0.066667
C. 117\frac{1}{17}
D. 15

Answer: C. 117\frac{1}{17}

Explanation:
Sum of probabilities must be 1:

P(1)+P(2)+P(3)+P(4)+P(5)=1

P(1) + P(2) + P(3) + P(4) + P(5) = 1 k(1)+k(2)+k(3)+k(4+1)+k(5+1)=k+2k+3k+5k+6k=17k=1

k(1) + k(2) + k(3) + k(4+1) + k(5+1) = k + 2k + 3k + 5k + 6k = 17k = 1 k=117k = \frac{1}{17}


Question 5

Find the value of E(X)E(X) for the random variable in Question 4.
A. 2.1609
B. 1.472
C. 4.267
D. 3.765

Answer: D. 3.765

Explanation:
Using k=117k = \frac{1}{17}:

E(X)=[xP(x)]=1P(1)+2P(2)+3P(3)+4P(4)+5P(5)

E(X) = \sum [x \cdot P(x)] = 1 \cdot P(1) + 2 \cdot P(2) + 3 \cdot P(3) + 4 \cdot P(4) + 5 \cdot P(5) =1(117)+2(217)+3(317)+4(517)+5(617)

= 1 \left(\frac{1}{17}\right) + 2 \left(\frac{2}{17}\right) + 3 \left(\frac{3}{17}\right) + 4 \left(\frac{5}{17}\right) + 5 \left(\frac{6}{17}\right) =117+417+917+2017+3017

=1+4+9+20+3017

=6417

3.7647

3.765= \frac{1}{17} + \frac{4}{17} + \frac{9}{17} + \frac{20}{17} + \frac{30}{17} = \frac{1+4+9+20+30}{17} = \frac{64}{17} \approx 3.7647 \approx 3.765


Question 6

Find P(2<X4)P(2 < X \leq 4) for the random variable in Question 4.
A. 0.5333
B. 0.4706
C. 0.6667
D. 0.4667

Answer: B. 0.4706

Explanation:

P(2<X4)=P(X=3)+P(X=4)

P(2 < X \leq 4) = P(X=3) + P(X=4) P(3)=k3=1173=317

P(3) = k \cdot 3 = \frac{1}{17} \cdot 3 = \frac{3}{17} P(4)=k(4+1)=1175=517

P(4) = k \cdot (4+1) = \frac{1}{17} \cdot 5 = \frac{5}{17} P(2<X4)=317+517=817

0.4706P(2 < X \leq 4) = \frac{3}{17} + \frac{5}{17} = \frac{8}{17} \approx 0.4706


Question 7

A random variable XB(12,p)X \sim \text{B}(12, p). The variance is 1.92. Find possible values of pp.
A. 2 and 4
B. 0.5 and 0.5
C. 0.12 and 0.88
D. 0.2 and 0.8

Answer: D. 0.2 and 0.8

Explanation:
For binomial distribution, variance σ2=np(1p)\sigma^2 = np(1-p):

12p(1p)=1.92

12p(1-p) = 1.92 p(1p)=1.9212=0.16

p(1-p) = \frac{1.92}{12} = 0.16 pp2=0.16    p2p+0.16=0p - p^2 = 0.16 \implies p^2 - p + 0.16 = 0

Solve quadratic equation:

p=1±14(1)(0.16)2=1±0.362=1±0.62p = \frac{1 \pm \sqrt{1 - 4(1)(0.16)}}{2} = \frac{1 \pm \sqrt{0.36}}{2} = \frac{1 \pm 0.6}{2}

p=1.62=0.8orp=0.42=0.2p = \frac{1.6}{2} = 0.8 \quad \text{or} \quad p = \frac{0.4}{2} = 0.2


Question 8

40% of students favor introducing scrubs. 8 students are randomly selected. Find probability exactly 4 are in favor.
A. 0.3455
B. 0.2322
C. 0.5806
D. 0.2508

Answer: B. 0.2322

Explanation:
Binomial distribution: n=8n=8, p=0.4p=0.4, k=4k=4

P(X=4)=(84)(0.4)4(0.6)4

P(X=4) = \binom{8}{4} (0.4)^4 (0.6)^4 (84)=70,(0.4)4=0.0256,(0.6)4=0.1296

\binom{8}{4} = 70, \quad (0.4)^4 = 0.0256, \quad (0.6)^4 = 0.1296 P=700.02560.1296=700.00331776=0.23224320.2322P = 70 \cdot 0.0256 \cdot 0.1296 = 70 \cdot 0.00331776 = 0.2322432 \approx 0.2322


Question 9

Industrial injuries follow Poisson distribution with mean 0.5. Find probability of more than 2 accidents in a week.
A. 0.90980
B. 0.01439
C. 0.05229
D. 0.98561

Answer: B. 0.01439

Explanation:
Poisson distribution: λ=0.5\lambda = 0.5

P(X>2)=1P(X2)=1[P(X=0)+P(X=1)+P(X=2)]

P(X > 2) = 1 - P(X \leq 2) = 1 - [P(X=0) + P(X=1) + P(X=2)] P(X=k)=eλλkk!

P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!} P(X=0)=e0.5(0.5)00!=e0.50.6065

P(X=0) = e^{-0.5} \frac{(0.5)^0}{0!} = e^{-0.5} \approx 0.6065 P(X=1)=e0.50.510.60650.5=0.30325

P(X=1) = e^{-0.5} \frac{0.5}{1} \approx 0.6065 \cdot 0.5 = 0.30325 P(X=2)=e0.50.2520.60650.125=0.0758125

P(X=2) = e^{-0.5} \frac{0.25}{2} \approx 0.6065 \cdot 0.125 = 0.0758125 P(X2)0.6065+0.30325+0.0758125=0.9855625

P(X \leq 2) \approx 0.6065 + 0.30325 + 0.0758125 = 0.9855625 P(X>2)=10.9855625

=0.0144375

0.01439P(X > 2) = 1 - 0.9855625 = 0.0144375 \approx 0.01439


Question 10

Continuous random variable XX has pdf:

f(x)={kx0x<2k(2x1)2x70elsewheref(x) = \begin{cases} kx & 0 \leq x < 2 \\ k(2x - 1) & 2 \leq x \leq 7 \\ 0 & \text{elsewhere} \end{cases}

Find kk.
A. 11442\frac{1}{1442}
B. 117\frac{1}{17}
C. 12044\frac{1}{2044}
D. 142\frac{1}{42}

Answer: D. 142\frac{1}{42}

Explanation:
Total integral of pdf is 1:

02kxdx+27k(2x1)dx=1\int_{0}^{2} kx dx + \int_{2}^{7} k(2x - 1) dx = 1

First integral:

02kxdx=k[x22]02=k(420)=2k\int_{0}^{2} kx dx = k \left[ \frac{x^2}{2} \right]_{0}^{2} = k \left( \frac{4}{2} - 0 \right) = 2k

Second integral:

27k(2x1)dx=k[x2x]27=k[(497)(42)]=k[422]=40k\int_{2}^{7} k(2x - 1) dx = k \left[ x^2 - x \right]_{2}^{7} = k \left[ (49 - 7) - (4 - 2) \right] = k [42 - 2] = 40k

Sum:

2k+40k=42k=1    k=1422k + 40k = 42k = 1 \implies k = \frac{1}{42}


Question 11

Calculate P(X<3)P(X < 3) for the random variable in Question 10.
A. 0.612
B. 0.552
C. 0.143
D. 0.024

Answer: C. 0.143

Explanation:

P(X<3)=02f(x)dx+23f(x)dxP(X < 3) = \int_{0}^{2} f(x) dx + \int_{2}^{3} f(x) dx

First part (0x<20 \leq x < 2):

02142xdx=142[x22]02=1422=242=121\int_{0}^{2} \frac{1}{42} x dx = \frac{1}{42} \left[ \frac{x^2}{2} \right]_{0}^{2} = \frac{1}{42} \cdot 2 = \frac{2}{42} = \frac{1}{21}

Second part (2x32 \leq x \leq 3):

23142(2x1)dx=142[x2x]23=142[(93)(42)]=142[62]=442=221\int_{2}^{3} \frac{1}{42} (2x - 1) dx = \frac{1}{42} \left[ x^2 - x \right]_{2}^{3} = \frac{1}{42} \left[ (9 - 3) - (4 - 2) \right] = \frac{1}{42} [6 - 2] = \frac{4}{42} = \frac{2}{21}

Sum:

121+221=321=170.14290.143\frac{1}{21} + \frac{2}{21} = \frac{3}{21} = \frac{1}{7} \approx 0.1429 \approx 0.143


Question 12

Find expected value E(X)E(X) for the random variable in Question 10.
A. 5.043
B. 3.852
C. 2.454
D. 4.845

Answer: D. 4.845

Explanation:

E(X)=02x142xdx+27x142(2x1)dxE(X) = \int_{0}^{2} x \cdot \frac{1}{42} x dx + \int_{2}^{7} x \cdot \frac{1}{42} (2x - 1) dx

First integral:

02142x2dx=142[x33]02=14283=8126=463\int_{0}^{2} \frac{1}{42} x^2 dx = \frac{1}{42} \left[ \frac{x^3}{3} \right]_{0}^{2} = \frac{1}{42} \cdot \frac{8}{3} = \frac{8}{126} = \frac{4}{63}

Second integral:

27142(2x2x)dx=142[2x33x22]27=142((2(343)3492)(2(8)342)]

\int_{2}^{7} \frac{1}{42} (2x^2 - x) dx = \frac{1}{42} \left[ \frac{2x^3}{3} - \frac{x^2}{2} \right]_{2}^{7} = \frac{1}{42} \left( \left( \frac{2(343)}{3} - \frac{49}{2} \right) - \left( \frac{2(8)}{3} - \frac{4}{2} \right) \right] =142((686324.5)(1632))=142(6863492163+2)= \frac{1}{42} \left( \left( \frac{686}{3} - 24.5 \right) - \left( \frac{16}{3} - 2 \right) \right) = \frac{1}{42} \left( \frac{686}{3} - \frac{49}{2} - \frac{16}{3} + 2 \right)

Simplify:

=142(6703452)=142(13401356)=14212056=12052524.7825= \frac{1}{42} \left( \frac{670}{3} - \frac{45}{2} \right) = \frac{1}{42} \left( \frac{1340 - 135}{6} \right) = \frac{1}{42} \cdot \frac{1205}{6} = \frac{1205}{252} \approx 4.7825

Total E(X)E(X):

463+4.78250.0635+4.7825=4.846\frac{4}{63} + 4.7825 \approx 0.0635 + 4.7825 = 4.846

(Detailed calculation yields 12052524.7825\frac{1205}{252} \approx 4.7825, but earlier 4630.0635\frac{4}{63} \approx 0.0635 was incomplete; full recalculation gives E(X)=12212524.845E(X) = \frac{1221}{252} \approx 4.845).


Question 13

Birthweight uniformly distributed from 2 kg to 5 kg. Find probability weight 4\leq 4 kg.
A. 0.3333
B. 0.2500
C. 0.1453
D. 0.6667

Answer: D. 0.6667

Explanation:
Uniform distribution: a=2a=2, b=5b=5, pdf f(x)=13f(x) = \frac{1}{3}

P(X4)=4252=230.6667P(X \leq 4) = \frac{4 - 2}{5 - 2} = \frac{2}{3} \approx 0.6667


Question 14

STI symptoms follow uniform distribution from 25 to 45 days. Write pdf.
A. f(x)={120x25x450elsewheref(x) = \begin{cases} \frac{1}{20} x & 25 \leq x \leq 45 \\ 0 & \text{elsewhere} \end{cases}
B. f(x)={12025x450elsewheref(x) = \begin{cases} \frac{1}{20} & 25 \leq x \leq 45 \\ 0 & \text{elsewhere} \end{cases}
C. F(x)={12025x450elsewhereF(x) = \begin{cases} \frac{1}{20} & 25 \leq x \leq 45 \\ 0 & \text{elsewhere} \end{cases}
D. None

Answer: B. f(x)={12025x450elsewheref(x) = \begin{cases} \frac{1}{20} & 25 \leq x \leq 45 \\ 0 & \text{elsewhere} \end{cases}

Explanation:
Uniform distribution: pdf is constant over [a,b][a,b].

a=25,b=45,range=20,f(x)=1ba=120a=25, \, b=45, \, \text{range} = 20, \, f(x) = \frac{1}{b-a} = \frac{1}{20}


Question 15

Doctor arrives every 8 minutes. Waiting times follow Poisson distribution. Average waiting time?
A. 18\frac{1}{8} minutes
B. 16 minutes
C. 64 minutes
D. 8 minutes

Answer: D. 8 minutes

Explanation:
In a Poisson process, the average waiting time (interarrival time) is the inverse of the rate. "Every 8 minutes" implies average waiting time is 8 minutes.


Question 16

Rotting time exponentially distributed with average 5 days. Find probability rotting < 1 day.
A. 0.3625
B. 0.1813
C. 0.0067
D. 0.8187

Answer: B. 0.1813

Explanation:
Exponential distribution: mean μ=5\mu = 5, rate λ=15=0.2\lambda = \frac{1}{5} = 0.2

P(X<1)=1eλx

=1e0.21

=1e0.2

10.8187

=0.1813P(X < 1) = 1 - e^{-\lambda x} = 1 - e^{-0.2 \cdot 1} = 1 - e^{-0.2} \approx 1 - 0.8187 = 0.1813


Question 17

Butchery refunds if rotting time is in first 8%. Cutoff days?
A. 12.62
B. 0.42
C. 6.31
D. 0.52

Answer: B. 0.42

Explanation:
Find tt such that P(Xt)=0.08P(X \leq t) = 0.08:

1eλt=0.08    eλt=0.92    λt=ln(0.92)    t=ln(0.92)λ

1 - e^{-\lambda t} = 0.08 \implies e^{-\lambda t} = 0.92 \implies -\lambda t = \ln(0.92) \implies t = -\frac{\ln(0.92)}{\lambda} ln(0.92)0.08338,λ=0.2

\ln(0.92) \approx -0.08338, \, \lambda = 0.2 t=0.083380.2=0.083380.2

=0.4169

0.42 dayst = -\frac{-0.08338}{0.2} = \frac{0.08338}{0.2} = 0.4169 \approx 0.42 \text{ days}


Question 18

Time to explain illness exponentially distributed with average 12 minutes. Probability > 10 minutes?
A. 0.0232
B. 0.5542
C. 0.4346
D. 0.3012

Answer: C. 0.4346

Explanation:
Mean μ=12\mu = 12, λ=112\lambda = \frac{1}{12}

P(X>10)=eλx=e1012=e56e0.83330.4346P(X > 10) = e^{-\lambda x} = e^{-\frac{10}{12}} = e^{-\frac{5}{6}} \approx e^{-0.8333} \approx 0.4346


Question 19

Properties: two outcomes, complementary, independent trials. Which distribution?
A. Poisson
B. Normal
C. Exponential
D. Bernoulli

Answer: D. Bernoulli

Explanation:
Bernoulli distribution describes a single trial with two complementary outcomes (success/failure).


Question 20

Formula for standard deviation of any probability distribution?
A. xP(x)\sqrt{\sum xP(x)}


B. x2P(x)[xP(x)]2\sqrt{\sum x^2 P(x) - [\sum xP(x)]^2}


C. abx2f(x)dx(abxf(x)dx)2\sqrt{\int_a^b x^2 f(x) dx - (\int_a^b xf(x) dx)^2}


D. E(X2)(E(X))2\sqrt{E(X^2) - (E(X))^2}

Answer: D. E(X2)(E(X))2\sqrt{E(X^2) - (E(X))^2}

Explanation:
Standard deviation σ=Variance\sigma = \sqrt{\text{Variance}}, and variance = E(X2)[E(X)]2E(X^2) - [E(X)]^2. This applies to any distribution.


Question 21

Probability mass function for complaints:

XX 0 1 3 4 6
P(X)P(X) 14\frac{1}{4} 16\frac{1}{6} 13\frac{1}{3} 112\frac{1}{12} 16\frac{1}{6}
Find F(4)F(4).
A. 34\frac{3}{4}
B. 112\frac{1}{12}
C. 56\frac{5}{6}
D. 1112\frac{11}{12}

Answer: C. 56\frac{5}{6}

Explanation:
F(4)=P(X4)=P(X=0)+P(X=1)+P(X=3)+P(X=4)F(4) = P(X \leq 4) = P(X=0) + P(X=1) + P(X=3) + P(X=4)

=14+16+13+112=312+212+412+112=1012=56= \frac{1}{4} + \frac{1}{6} + \frac{1}{3} + \frac{1}{12} = \frac{3}{12} + \frac{2}{12} + \frac{4}{12} + \frac{1}{12} = \frac{10}{12} = \frac{5}{6}


Question 22

Expected number of complaints (same pmf as Q21).
A. 1.2
B. 3.0
C. 2.5
D. 2.25

Answer: C. 2.5

Explanation:

E(X)=[xP(x)]=014+116+313+4112+616

E(X) = \sum [x \cdot P(x)] = 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{6} + 3 \cdot \frac{1}{3} + 4 \cdot \frac{1}{12} + 6 \cdot \frac{1}{6} =0+16+1+412+1

=0+0.1667+1+0.3333+1

=2.5= 0 + \frac{1}{6} + 1 + \frac{4}{12} + 1 = 0 + 0.1667 + 1 + 0.3333 + 1 = 2.5


Question 23

Find E(72X)E(7 - 2X) (same pmf as Q21).
A. 4.600
B. 1.000
C. 2.000
D. 2.500

Answer: C. 2.000

Explanation:

E(72X)=72E(X)=72(2.5)=75=2E(7 - 2X) = 7 - 2E(X) = 7 - 2(2.5) = 7 - 5 = 2


Question 24

Which is not true about continuous random variables?
A. 0P(x)10 \leq P(x) \leq 1
B. abf(x)dx=1\int_a^b f(x) dx = 1
C. Range of values is in an interval
D. P(x)=1\sum P(x) = 1

Answer: D. P(x)=1\sum P(x) = 1

Explanation:

  • A: P(x)P(x) for a point is 0, which is in [0,1].
  • B: Total integral of pdf is 1.
  • C: Continuous variables take values in intervals.
  • D: Summing probabilities is for discrete; continuous uses integrals.

Question 25

All are continuous distributions except:
A. Normal
B. Poisson
C. Exponential
D. Uniform

Answer: B. Poisson

Explanation:
Poisson is a discrete distribution (counts events). Others are continuous.

@Dr. Microbiota

END OF SOLUTIONS