INTRODUCTION TO MATHEMATICAL METHODS

SEMESTER ONE EXAMINATION JULY INTAKE 2016

DATE : 9th NOVEMBER, 2016


Question One

(a) Define the following
i. Cardinality of a set: The number of elements in a set, denoted as A|A| for a set AA.
ii. Domain of a function: The set of all input values (independent variables) for which the function is defined.

(b) Given that XYX \subset Y are any sets. Simplify the following
i. (XY)(XY)(X \cup Y) \cap (X \cup Y)
Answer: XYX \cup Y
Explanation:

  • Intersection of a set with itself is the set: (AA=A)(A \cap A = A).
  • Given XYX \subset Y, XY=YX \cup Y = Y.
  • Thus, (XY)(XY)=XY=Y(X \cup Y) \cap (X \cup Y) = X \cup Y = Y.

ii. Y(YX)cY \cap (Y - X)^c
Answer: XX
Explanation:

  • YX=YXcY - X = Y \cap X^c.
  • (YX)c=(YXc)c=YcX(Y - X)^c = (Y \cap X^c)^c = Y^c \cup X (De Morgan's Law).
  • Y(YcX)=(YYc)(YX)=(YX)Y \cap (Y^c \cup X) = (Y \cap Y^c) \cup (Y \cap X) = \emptyset \cup (Y \cap X).
  • Since XYX \subset Y, YX=XY \cap X = X.
  • Thus, Y(YX)c=XY \cap (Y - X)^c = X.

(c) Prove the following identity
i. 1+sinx1sinx=secx+tanx\sqrt{\frac{1 + \sin x}{1 - \sin x}} = \sec x + \tan x
Proof:

  • Let’s prove the identity:

    1+sinx1sinx=secx+tanx\sqrt{\frac{1 + \sin x}{1 - \sin x}} = \sec x + \tan x


    ✏️ Step 1: Express RHS in terms of sine and cosine

    Recall:

    • secx=1cosx\sec x = \frac{1}{\cos x}
    • tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}

    So:

    secx+tanx=1+sinxcosx\sec x + \tan x = \frac{1 + \sin x}{\cos x}

    Now square both sides:

    (secx+tanx)2=(1+sinxcosx)2=(1+sinx)2cos2x(\sec x + \tan x)^2 = \left( \frac{1 + \sin x}{\cos x} \right)^2 = \frac{(1 + \sin x)^2}{\cos^2 x}


    ✏️ Step 2: Simplify LHS

    Start with:

    1+sinx1sinx\sqrt{\frac{1 + \sin x}{1 - \sin x}}

    Square both sides:

    (1+sinx1sinx)2=1+sinx1sinx\left( \sqrt{\frac{1 + \sin x}{1 - \sin x}} \right)^2 = \frac{1 + \sin x}{1 - \sin x}

    Now rationalize the denominator:

    1+sinx1sinx=(1+sinx)21sin2x\frac{1 + \sin x}{1 - \sin x} = \frac{(1 + \sin x)^2}{1 - \sin^2 x}

    Recall:

    • 1sin2x=cos2x1 - \sin^2 x = \cos^2 x

    So:

    (1+sinx)2cos2x\frac{(1 + \sin x)^2}{\cos^2 x}

    Which matches the squared RHS.


    ✅ Final Step: Take square root of both sides

    (1+sinx)2cos2x=1+sinxcosx=secx+tanx\sqrt{\frac{(1 + \sin x)^2}{\cos^2 x}} = \frac{1 + \sin x}{\cos x} = \sec x + \tan x


    📌 Proven:

    1+sinx1sinx=secx+tanx

ii. sin2x(secxcscx)cosxtanx=tanx1\frac{\sin^2 x (\sec x - \csc x)}{\cos x \tan x} = \tan x - 1
Proof:

  • Left-Hand Side (LHS):

secxcscx=1cosx1sinx=sinxcosxsinxcosx.\sec x - \csc x = \frac{1}{\cos x} - \frac{1}{\sin x} = \frac{\sin x - \cos x}{\sin x \cos x}.

sin2x(secxcscx)=sin2xsinxcosxsinxcosx=sinx(sinxcosx)cosx=sinxtanxsinx.\sin^2 x (\sec x - \csc x) = \sin^2 x \cdot \frac{\sin x - \cos x}{\sin x \cos x} = \frac{\sin x (\sin x - \cos x)}{\cos x} = \sin x \tan x - \sin x.

  • Denominator: cosxtanx=cosxsinxcosx=sinx\cos x \tan x = \cos x \cdot \frac{\sin x}{\cos x} = \sin x.
  • Thus,

sinxtanxsinxsinx=tanx1.\frac{\sin x \tan x - \sin x}{\sin x} = \tan x - 1.

  • LHS = RHS.


(d) Solve 8cos2x+2cosx1=08 \cos^2 x + 2 \cos x - 1 = 0 for 0x2π0 \leq x \leq 2\pi
Answer: x=cos1(14),2πcos1(14),2π3,4π3x = \cos^{-1}\left(\frac{1}{4}\right), \quad 2\pi - \cos^{-1}\left(\frac{1}{4}\right), \quad \frac{2\pi}{3}, \quad \frac{4\pi}{3}
Explanation:

  • Let u=cosxu = \cos x: 8u2+2u1=08u^2 + 2u - 1 = 0.
  • Quadratic formula: u=2±4+3216=2±616u = \frac{-2 \pm \sqrt{4 + 32}}{16} = \frac{-2 \pm 6}{16}.
  • Solutions: u=14u = \frac{1}{4} or u=12u = -\frac{1}{2}.
  • Case 1: cosx=14\cos x = \frac{1}{4}:
    • x=cos1(14)x = \cos^{-1}\left(\frac{1}{4}\right) (in quadrant I, approx 1.318 rad).
    • x=2πcos1(14)x = 2\pi - \cos^{-1}\left(\frac{1}{4}\right) (in quadrant IV).
  • Case 2: cosx=12\cos x = -\frac{1}{2}:
    • x=2π3x = \frac{2\pi}{3} (quadrant II).
    • x=4π3x = \frac{4\pi}{3} (quadrant III).
  • Solutions: x1.318,4.965,2π3,4π3x \approx 1.318, \quad 4.965, \quad \frac{2\pi}{3}, \quad \frac{4\pi}{3} (or exact forms).

FOR UNDERSTANDING

8cos2x+2cosx1=0for0x2π8 \cos^2 x + 2 \cos x - 1 = 0 \quad \text{for} \quad 0 \leq x \leq 2\pi


✏️ Step 1: Let u=cosxu = \cos x

This transforms the equation into a quadratic in uu:

8u2+2u1=08u^2 + 2u - 1 = 0


✏️ Step 2: Solve the quadratic

Use the quadratic formula:

u=2±224(8)(1)2(8)=2±4+3216=2±3616u = \frac{-2 \pm \sqrt{2^2 - 4(8)(-1)}}{2(8)} = \frac{-2 \pm \sqrt{4 + 32}}{16} = \frac{-2 \pm \sqrt{36}}{16} u=2±616u = \frac{-2 \pm 6}{16}

So:

  • u=416=14u = \frac{4}{16} = \frac{1}{4}
  • u=816=12u = \frac{-8}{16} = -\frac{1}{2}

✏️ Step 3: Solve for xx

Now solve cosx=14\cos x = \frac{1}{4} and cosx=12\cos x = -\frac{1}{2}

Case 1: cosx=14\cos x = \frac{1}{4}

This occurs in Quadrants I and IV:

x=cos1(14)1.3181(radians)x = \cos^{-1}\left(\frac{1}{4}\right) \approx 1.3181 \quad \text{(radians)} x=2π1.31814.9651x = 2\pi - 1.3181 \approx 4.9651

Case 2: cosx=12\cos x = -\frac{1}{2}

This occurs in Quadrants II and III:

x=cos1(12)=2π3,4π3x = \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}, \quad \frac{4\pi}{3}


✅ Final Answer:

x1.3181, 4.9651, 2π3, 4π3


Question Two

(a) Define the following
i. Composite function of two functions: For functions ff and gg, the composite fgf \circ g is defined as (fg)(x)=f(g(x))(f \circ g)(x) = f(g(x)), where g(x)g(x) is in the domain of ff.
ii. Equality of two sets: Sets AA and BB are equal (A=BA = B) if they contain exactly the same elements, i.e., ABA \subseteq B and BAB \subseteq A.

(b) Given that XYX \subset Y are sets. Prove the following
i. (XY)(XY)=X(X \cup Y) \cap (X \cup Y) = X
Note: The given equation is incorrect. Counterexample: X={1},Y={1,2}X = \{1\}, Y = \{1,2\}, then (XY)(XY)={1,2}X(X \cup Y) \cap (X \cup Y) = \{1,2\} \neq X.
Correction: Likely intended as (XY)(XY)=XY=X(X \cap Y) \cup (X \cap Y) = X \cap Y = X (since XYX \subset Y).

ii. X(YX)=X \cap (Y - X) = \emptyset
Proof:

  • YX=YXcY - X = Y \cap X^c.
  • X(YXc)=(XXc)Y=Y=X \cap (Y \cap X^c) = (X \cap X^c) \cap Y = \emptyset \cap Y = \emptyset.

(c) Given f(x)=1x+2f(x) = \frac{1}{x+2} (x2x \neq -2) and g(x)=x+2g(x) = x + 2. Find
i. fg(x)f \circ g(x)
Answer: 1x+4\frac{1}{x+4}
Explanation:

  • fg(x)=f(g(x))=f(x+2)=1(x+2)+2=1x+4f \circ g(x) = f(g(x)) = f(x+2) = \frac{1}{(x+2)+2} = \frac{1}{x+4}.
  • Domain: x4x \neq -4.

ii. fg(1)f \circ g(1)
Answer: 15\frac{1}{5}
Explanation:

  • fg(1)=11+4=15f \circ g(1) = \frac{1}{1+4} = \frac{1}{5}.

iii. Existence of inverse of fg(x)f \circ g(x)
Answer: Inverse exists.
Explanation:

  • fg(x)=1x+4f \circ g(x) = \frac{1}{x+4} is one-to-one (strictly decreasing for x>4x > -4 and x<4x < -4).
  • Bijective from R{4}\mathbb{R} \setminus \{-4\} to R{0}\mathbb{R} \setminus \{0\}, so inverse exists.

(d) Use chain rule to differentiate
i. y=(x3+2x)6y = (x^3 + 2x)^6
Answer: dydx=6(x3+2x)5(3x2+2)\frac{dy}{dx} = 6(x^3 + 2x)^5 (3x^2 + 2)
Explanation:

  • Let u=x3+2xu = x^3 + 2x, y=u6y = u^6.
  • dydx=6u5(3x2+2)=6(x3+2x)5(3x2+2)\frac{dy}{dx} = 6u^5 \cdot (3x^2 + 2) = 6(x^3 + 2x)^5 (3x^2 + 2).

ii. f(x)=(6x3x32)5/6f(x) = (6x - 3x^3 - 2)^{5/6}
Answer: f(x)=52(23x2)(6x3x32)1/6f'(x) = \frac{5}{2}(2 - 3x^2)(6x - 3x^3 - 2)^{-1/6}
Explanation:

  • Let u=6x3x32u = 6x - 3x^3 - 2, f(x)=u5/6f(x) = u^{5/6}.
  • f(x)=56u1/6(69x2)=56(69x2)(6x3x32)1/6f'(x) = \frac{5}{6}u^{-1/6} \cdot (6 - 9x^2) = \frac{5}{6}(6 - 9x^2)(6x - 3x^3 - 2)^{-1/6}.
  • Simplify: 563(23x2)u1/6=52(23x2)(6x3x32)1/6\frac{5}{6} \cdot 3(2 - 3x^2) u^{-1/6} = \frac{5}{2}(2 - 3x^2)(6x - 3x^3 - 2)^{-1/6}.

Question Three

(a) State the following
i. Remainder theorem: If polynomial f(x)f(x) is divided by xcx - c, the remainder is f(c)f(c).
ii. De Morgan’s law: For sets, (XY)=XY(X \cup Y)' = X' \cap Y' and (XY)=XY(X \cap Y)' = X' \cup Y'.

(b)
i. Remainder of f(x)=x3+3x2+x+10f(x) = x^3 + 3x^2 + x + 10 divided by x+2x + 2
Answer: 12
Explanation:

  • x+2=x(2)x + 2 = x - (-2), so remainder f(2)=(2)3+3(2)2+(2)+10=8+122+10=12f(-2) = (-2)^3 + 3(-2)^2 + (-2) + 10 = -8 + 12 - 2 + 10 = 12.

ii. Show (XY)=XY(X \cup Y)' = X' \cap Y'
Proof:

  • Let a(XY)a \in (X \cup Y)'aXYa \notin X \cup YaXa \notin X and aYa \notin YaXa \in X' and aYa \in Y'aXYa \in X' \cap Y'.
  • Let aXYa \in X' \cap Y'aXa \in X' and aYa \in Y'aXa \notin X and aYa \notin YaXYa \notin X \cup Ya(XY)a \in (X \cup Y)'.
  • Thus, (XY)=XY(X \cup Y)' = X' \cap Y'.

(c) Given f(x)=x3x24x+4f(x) = x^3 - x^2 - 4x + 4
i. Factorise completely
Answer: f(x)=(x1)(x2)(x+2)f(x) = (x-1)(x-2)(x+2)
Explanation:

  • Roots: Possible rational roots ±1,±2,±4\pm1, \pm2, \pm4.
  • f(1)=114+4=0f(1) = 1 - 1 - 4 + 4 = 0, so x1x-1 is a factor.
  • Synthetic division:
    1 | 1  -1  -4  4
          1    0  -4
      -----------------
          1   0  -4 | 0
    
  • Quotient x24=(x2)(x+2)x^2 - 4 = (x-2)(x+2).
  • Thus, f(x)=(x1)(x2)(x+2)f(x) = (x-1)(x-2)(x+2).

ii. Solutions to f(x)=0f(x) = 0
Answer: x=2,1,2x = -2, 1, 2
Explanation:

  • Set factors to zero: x1=0x-1=0, x2=0x-2=0, x+2=0x+2=0.

iii. Sketch graph

  • Description:
    • Roots at x=2,1,2x = -2, 1, 2, y-intercept f(0)=4f(0) = 4.
    • Behavior:
      • x<2x < -2: f(x)<0f(x) < 0 (since all factors negative).
      • 2<x<1-2 < x < 1: f(x)>0f(x) > 0 (even number of negative factors).
      • 1<x<21 < x < 2: f(x)<0f(x) < 0 (odd number of negative factors).
      • x>2x > 2: f(x)>0f(x) > 0 (all factors positive).
    • Cubic with positive leading coefficient: \to -\infty as xx \to -\infty, \to \infty as xx \to \infty.
    • Sketch crosses x-axis at (2,0)(-2,0), (1,0)(1,0), (2,0)(2,0), and y-axis at (0,4)(0,4).

iv. Solution to x3x24x+40x^3 - x^2 - 4x + 4 \geq 0
Answer: [2,1][2,)[-2, 1] \cup [2, \infty)
Explanation:

  • Sign analysis:
    • f(x)0f(x) \geq 0 for x[2,1][2,)x \in [-2, 1] \cup [2, \infty).


(d) Use quotient rule to differentiate
i. y=xx3+1=x1/2x3+1y = \frac{\sqrt{x}}{x^3 + 1} = \frac{x^{1/2}}{x^3 + 1}
Answer: y=15x32x(x3+1)2y' = \frac{1 - 5x^3}{2\sqrt{x}(x^3 + 1)^2}
Explanation:

  • Quotient rule: y=uvuvv2y' = \frac{u'v - uv'}{v^2}, u=x1/2u = x^{1/2}, v=x3+1v = x^3 + 1.
  • u=12x1/2u' = \frac{1}{2}x^{-1/2}, v=3x2v' = 3x^2.
  • Numerator: 12x1/2(x3+1)x1/2X3x2
  • =12x5/2+12x1/23x5/2
  • =52x5/2+12x1/2\frac{1}{2}x^{-1/2}(x^3 + 1) - x^{1/2} \cdot 3x^2 = \frac{1}{2}x^{5/2} + \frac{1}{2}x^{-1/2} - 3x^{5/2} = -\frac{5}{2}x^{5/2} + \frac{1}{2}x^{-1/2}.
  • Simplify: 12x1/2(15x3)\frac{1}{2}x^{-1/2}(1 - 5x^3).
  • y=12x1/2(15x3)(x3+1)2
  • =15x32x(x3+1)2y' = \frac{\frac{1}{2}x^{-1/2}(1 - 5x^3)}{(x^3 + 1)^2} = \frac{1 - 5x^3}{2\sqrt{x}(x^3 + 1)^2}.


ii. g(x)=x2+3x3+xg(x) = \frac{x^2 + 3}{x^3 + x}
Answer: g(x)=x48x23(x3+x)2g'(x) = \frac{-x^4 - 8x^2 - 3}{(x^3 + x)^2}
Explanation:

  • Quotient rule: u=x2+3u = x^2 + 3, v=x3+xv = x^3 + x.
  • u=2xu' = 2x, v=3x2+1v' = 3x^2 + 1.
  • Numerator: 2x(x3+x)(x2+3)(3x2+1)

=2x4+2x2(3x4+x2+9x2+3)

=2x4+2x23x410x23

=x48x232x(x^3 + x) - (x^2 + 3)(3x^2 + 1) = 2x^4 + 2x^2 - (3x^4 + x^2 + 9x^2 + 3) = 2x^4 + 2x^2 - 3x^4 - 10x^2 - 3 = -x^4 - 8x^2 - 3.

  • g(x)=x48x23(x3+x)2g'(x) = \frac{-x^4 - 8x^2 - 3}{(x^3 + x)^2}.

Question Four

(a) Define the following
i. Many to one function: A function where two or more distinct domain elements map to the same range element (e.g., f(x1)=f(x2)f(x_1) = f(x_2) for x1x2x_1 \neq x_2).
ii. Exponential function: A function of the form f(x)=axf(x) = a^x or f(x)=bakxf(x) = b \cdot a^{kx} (a>0a > 0, a1a \neq 1).

(b) Determine if function is one-to-one, many-to-one, or neither. Find inverse if exists.
i. f(x)=33+2x,x32f(x) = \frac{3}{3 + 2x}, \, x \neq -\frac{3}{2}
Answer: One-to-one; inverse f1(x)=3(1x)2xf^{-1}(x) = \frac{3(1-x)}{2x}
Explanation:

  • One-to-one: Assume f(x1)=f(x2)f(x_1) = f(x_2):

33+2x1=33+2x2  

  3+2x1=3+2x2  

  x1=x2.\frac{3}{3+2x_1} = \frac{3}{3+2x_2} \implies 3+2x_1 = 3+2x_2 \implies x_1 = x_2.

  • Inverse: Solve y=33+2xy = \frac{3}{3+2x} for xx:

y(3+2x)=3  

  2xy=33y  

  x=3(1y)2y.y(3+2x) = 3 \implies 2xy = 3 - 3y \implies x = \frac{3(1-y)}{2y}.

  • Thus, f1(x)=3(1x)2xf^{-1}(x) = \frac{3(1-x)}{2x}, domain x0x \neq 0.

ii. g(x)=x24g(x) = x^2 - 4
Answer: Many-to-one; no inverse (unless domain restricted).
Explanation:

  • Many-to-one: g(2)=g(2)=0g(2) = g(-2) = 0.
  • No inverse over R\mathbb{R} (not bijective).
  • If domain restricted to x0x \geq 0, inverse g1(x)=x+4g^{-1}(x) = \sqrt{x+4}; if x0x \leq 0, g1(x)=x+4g^{-1}(x) = -\sqrt{x+4}.

(c) Spread of virus: y=10001+999e0.8ty = \frac{1000}{1 + 999e^{-0.8t}}, t0t \geq 0
i. Infected after 4 days
Answer: 24 students
Explanation:

  • t=4t = 4: y=10001+999e3.2y = \frac{1000}{1 + 999e^{-3.2}}.
  • e3.20.04076e^{-3.2} \approx 0.04076, so 999×0.0407640.719999 \times 0.04076 \approx 40.719.
  • 1+40.719=41.7191 + 40.719 = 41.719, y=100041.71923.9724y = \frac{1000}{41.719} \approx 23.97 \approx 24.

ii. Campus closes when 40% infected (y=400). Find t.
Answer: 8.13 days
Explanation:

  • Solve 400=10001+999e0.8t400 = \frac{1000}{1 + 999e^{-0.8t}}:

400(1+999e0.8t)=1000  

  999e0.8t=10004001=1.5  

  e0.8t=1.5999

=1666.400(1 + 999e^{-0.8t}) = 1000 \implies 999e^{-0.8t} = \frac{1000}{400} - 1 = 1.5 \implies e^{-0.8t} = \frac{1.5}{999} = \frac{1}{666}.

  • 0.8t=ln(1/666)=ln(666)    t=ln(666)0.8-0.8t = \ln(1/666) = -\ln(666) \implies t = \frac{\ln(666)}{0.8}.
  • ln(666)6.501\ln(666) \approx 6.501, so t6.5010.8=8.1268.13t \approx \frac{6.501}{0.8} = 8.126 \approx 8.13 days.


(d) Use product rule to differentiate
i. g(x)=(x2+3)(x34x)g(x) = (x^2 + 3)(x^3 - 4x)
Answer: g(x)=5x43x212g'(x) = 5x^4 - 3x^2 - 12
Explanation:

  • Product rule: u=x2+3u = x^2 + 3, v=x34xv = x^3 - 4x.
  • u=2xu' = 2x, v=3x24v' = 3x^2 - 4.

g(x)=2x(x34x)+(x2+3)(3x24)

=2x48x2+3x4+5x212

=5x43x212g'(x) = 2x(x^3 - 4x) + (x^2 + 3)(3x^2 - 4) = 2x^4 - 8x^2 + 3x^4 + 5x^2 - 12 = 5x^4 - 3x^2 - 12.

ii. g(x)=(6x+3)(x32x)g(x) = (6x + 3)(x^3 - 2x)
Answer: g(x)=24x3+9x224x6g'(x) = 24x^3 + 9x^2 - 24x - 6
Explanation:

  • Product rule: u=6x+3u = 6x + 3, v=x32xv = x^3 - 2x.
  • u=6u' = 6, v=3x22v' = 3x^2 - 2.

g(x)=6(x32x)+(6x+3)(3x22)

=6x312x+18x3+9x212x6

=24x3+9x224x6g'(x) = 6(x^3 - 2x) + (6x + 3)(3x^2 - 2) = 6x^3 - 12x + 18x^3 + 9x^2 - 12x - 6 = 24x^3 + 9x^2 - 24x - 6.


Question Five

(a) State when
i. Quadratic ax2+bx+c=0ax^2 + bx + c = 0 has real roots: Discriminant D=b24ac0D = b^2 - 4ac \geq 0.
ii. xkx - k is a factor of p(x)p(x): p(k)=0p(k) = 0.

(b) Given 2log9x+log3y=22\log_9 x + \log_3 y = 2, show xy=9xy = 9. Solve with log10(x+y)=1\log_{10}(x+y) = 1.
Proof for xy=9xy = 9:

  • 2log9x=2log3xlog39=2log3x2=log3x2\log_9 x = 2 \cdot \frac{\log_3 x}{\log_3 9} = 2 \cdot \frac{\log_3 x}{2} = \log_3 x.
  • Thus, log3x+log3y=log3(xy)=2\log_3 x + \log_3 y = \log_3(xy) = 2, so xy=32=9xy = 3^2 = 9.
    Solve system:
  • log10(x+y)=1    x+y=10\log_{10}(x+y) = 1 \implies x + y = 10.
  • xy=9xy = 9, so xx and yy are roots of t210t+9=0t^2 - 10t + 9 = 0.
  • Factors: (t1)(t9)=0(t-1)(t-9) = 0, so t=1t = 1 or t=9t = 9.
  • Solutions: (x,y)=(1,9)(x,y) = (1,9) or (9,1)(9,1).

(c) Nature of roots without solving
i. x2+8x+16=0-x^2 + 8x + 16 = 0
Answer: Two distinct real roots
Explanation:

  • D=b24ac=644(1)(16)=64+64=128>0D = b^2 - 4ac = 64 - 4(-1)(16) = 64 + 64 = 128 > 0.

ii. 2x2+7x5=02x^2 + 7x - 5 = 0
Answer: Two distinct real roots
Explanation:

  • D=494(2)(5)=49+40=89>0D = 49 - 4(2)(-5) = 49 + 40 = 89 > 0.

(d) First principles differentiation
i. f(x)=x32xf(x) = x^3 - 2x
Answer: f(x)=3x22f'(x) = 3x^2 - 2
Explanation:

  • f(x)=limh0f(x+h)f(x)h=limh0[(x+h)32(x+h)][x32x]hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{[(x+h)^3 - 2(x+h)] - [x^3 - 2x]}{h}.
  • Expand: [x3+3x2h+3xh2+h32x2h]x3+2xh
  • =3x2h+3xh2+h32hh
  • =3x2+3xh+h22\frac{[x^3 + 3x^2h + 3xh^2 + h^3 - 2x - 2h] - x^3 + 2x}{h} = \frac{3x^2h + 3xh^2 + h^3 - 2h}{h} = 3x^2 + 3xh + h^2 - 2.
  • As h0h \to 0, f(x)=3x22f'(x) = 3x^2 - 2.

ii. f(x)=1xf(x) = \frac{1}{x}
Answer: f(x)=1x2f'(x) = -\frac{1}{x^2}
Explanation:

f(x)=limh01x+h1xh

=limh0x(x+h)x(x+h)h

=limh0hx(x+h)h

=limh01x(x+h)

=1x2f'(x) = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \lim_{h \to 0} \frac{\frac{x - (x+h)}{x(x+h)}}{h} = \lim_{h \to 0} \frac{-h}{x(x+h)h} = \lim_{h \to 0} \frac{-1}{x(x+h)} = -\frac{1}{x^2}.

(e) For y=5sin(x+π2)y = 5\sin\left(x + \frac{\pi}{2}\right)
Answer:

  • Amplitude: 5
  • Period: 2π2\pi
  • Phase shift: π2\frac{\pi}{2} left
  • Graph sketch:
    • Since sin(x+π2)=cosx\sin\left(x + \frac{\pi}{2}\right) = \cos x, y=5cosxy = 5\cos x.
    • Key points:
      • x=0x = 0: y=5y = 5
      • x=π2x = \frac{\pi}{2}: y=0y = 0
      • x=πx = \pi: y=5y = -5
      • x=3π2x = \frac{3\pi}{2}: y=0y = 0
      • x=2πx = 2\pi: y=5y = 5
    • Cosine wave with amplitude 5, period 2π2\pi, starting at max.

@Dr. Microbiota


END OF SOLUTIONS