INTRODUCTION TO MATHEMATICAL METHODS

FINAL EXAM JAN INTAKE 2023

DATE : 18th May, 2023

DURATION: 3 HOURS

INSTRUCTIONS:

  1. Write your Computer Number and TG on each answer sheet used.
  2. There are five questions; answer any four.
  3. Full credit only if all working is shown.
  4. Write details on answer booklet.
  5. Use back for rough work.

QUESTION ONE

(a) Define:
(i) Singleton set
A set with exactly one element.
(ii) Null set
The empty set, denoted \emptyset, with no elements.

(b) A=[2,6]A = [2,6], B=(4,10)B = (4,10), universal set U=[0,12]U = [0,12].
(i) AcBA^c \cup B
Solution:
Ac=UA=[0,2)(6,12]A^c = U \setminus A = [0,2) \cup (6,12], B=(4,10)B = (4,10), so AcB=[0,2)(4,12]A^c \cup B = [0,2) \cup (4,12].


Number Line:

To solve (i) AcBA^c \cup B, we need to:

🔍 Step-by-step Breakdown

1. Complement of A within universal set U=[0,12]U = [0, 12]

Set A=[2,6]A = [2, 6], so its complement AcA^c is everything in UU except AA:

Ac=[0,2)(6,12]A^c = [0, 2) \cup (6, 12]

2. Set B

B=(4,10)B = (4, 10)

3. Union: AcBA^c \cup B

We now combine:

  • Ac=[0,2)(6,12]A^c = [0, 2) \cup (6, 12]
  • B=(4,10)B = (4, 10)

Let’s merge these intervals:

  • [0,2)[0, 2) stays as-is.
  • (4,10)(6,12]=(4,12](4, 10) \cup (6, 12] = (4, 12] since they overlap.
  • So the full union is:

AcB=[0,2)(4,12]A^c \cup B = [0, 2) \cup (4, 12]


✅ Final Answer:

AcB=[0,2)(4,12]

Number Line:

  0     2      4      6      10     12
  [-----)     (-------------] 

(ii) BAB - A
Solution:
BA=(4,10)[2,6]=(6,10)B - A = (4,10) \setminus [2,6] = (6,10).   so if you see ∖ its the same as minus(-)

Let’s solve (ii) BAB - A using the sets:

  • A=[2,6]A = [2, 6]
  • B=(4,10)B = (4, 10)

🔍 Step-by-step Breakdown

1. Understand BAB - A

This means: all elements in BB that are not in AA.

  • B=(4,10)B = (4, 10)
  • A=[2,6]A = [2, 6]

So we subtract the overlap:

  • The overlap between AA and BB is (4,6](4, 6]
  • Removing this from BB gives:

BA=(6,10)B - A = (6, 10)


✅ Final Answer:

BA=(6,10)

Number Line:

  4      6      10
  (------) 

(c) U={a,b,c,d,e,f,g,h,i,j}U = \{a,b,c,d,e,f,g,h,i,j\}, A={b,d,f,h,j}A = \{b,d,f,h,j\}, B={a,c,d,e,g}B = \{a,c,d,e,g\}, C={g,h,j}C = \{g,h,j\}.
(i) (AB)Cc(A \cap B) \cup C^c
Solution:
AB={d}A \cap B = \{d\}, Cc=U - C={a,b,c,d,e,f,i}C^c = U \setminus C = \{a,b,c,d,e,f,i\}, so (AB)Cc={a,b,c,d,e,f,i}(A \cap B) \cup C^c = \{a,b,c,d,e,f,i\}.

(ii) (BA)cC(B \cap A)^c \cap C
Solution:
BA={d}B \cap A = \{d\}, (BA)c=U-{d}={a,b,c,e,f,g,h,i,j}(B \cap A)^c = U \setminus \{d\} = \{a,b,c,e,f,g,h,i,j\}, then C={g,h,j}\cap C = \{g,h,j\}.

(d) Survey of 100 students:

  • Only periodicals: 18
  • Web and books: 29
  • Books, web, periodicals: 15
  • Books and periodicals: 40
  • Web and periodicals: 20
  • Used books: 60
  • Used none: 7
    (i) Venn Diagram
    Solution:
    Let B=B = books, W=W = web, P=P = periodicals.
  • BWP=15B \cap W \cap P = 15
  • BPB \cap P only: 4015=2540 - 15 = 25
  • WPW \cap P only: 2015=520 - 15 = 5
  • BWB \cap W only: 2915=1429 - 15 = 14
  • Only PP: 18
  • Only BB: 60(25+15+14)=660 - (25 + 15 + 14) = 6
  • Only WW: Let Wonly=xW_{\text{only}} = x. Total: 6+x+18+25+14+5+15+7=100    x+90=100    x=106 + x + 18 + 25 + 14 + 5 + 15 + 7 = 100 \implies x + 90 = 100 \implies x = 10

Venn Diagram Values:

  • Bonly=6B_{\text{only}} = 6, Wonly=10W_{\text{only}} = 10, Ponly=18P_{\text{only}} = 18
  • BWonly=14B \cap W_{\text{only}} = 14, BPonly=25B \cap P_{\text{only}} = 25, WPonly=5W \cap P_{\text{only}} = 5
  • BWP=15B \cap W \cap P = 15
  • None = 7

(ii) Students using web
Solution:
n(W)=10+14+5+15=44n(W) = 10 + 14 + 5 + 15 = 44.

(iii) Students using books or periodicals

Solution:
n(BP)=n(B)+n(P)n(BP)

=60+(18+25+5+15)40

=60+6340

=83n(B \cup P) = n(B) + n(P) - n(B \cap P) = 60 + (18 + 25 + 5 + 15) - 40 = 60 + 63 - 40 = 83.

(e) A={2,3,4,7}A = \{2,3,4,7\}, B={2,3,4}B = \{2,3,4\}, C={1,2,3}C = \{1,2,3\}
(i) (AB)×(BC)(A \cap B) \times (B \cap C)

Solution:
AB={2,3,4}A \cap B = \{2,3,4\}, BC={2,3}B \cap C = \{2,3\}, so:

{2,3,4}×{2,3}={(2,2),(2,3),(3,2),(3,3),(4,2),(4,3)}\{2,3,4\} \times \{2,3\} = \{(2,2), (2,3), (3,2), (3,3), (4,2), (4,3)\}

(ii) (A×C)(B×C)(A \times C) \cup (B \times C)

Solution:
A×C={(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(7,1),(7,2),(7,3)}A \times C = \{(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(7,1),(7,2),(7,3)\}
B×C={(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3)}B \times C = \{(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3)\} (subset of A×CA \times C)
Union is A×CA \times C.


QUESTION TWO

(a) Define:
(i) Binary operation
A function :S×SS*: S \times S \to S mapping pairs to elements of SS.

(ii) Function
A relation assigning each element of domain exactly one element in codomain.

(b) Prove 3\sqrt{3} irrational.

Solution:
Assume 3=pq\sqrt{3} = \frac{p}{q} (coprime integers). Then p2=3q2p^2 = 3q^2. So p20(mod3)p^2 \equiv 0 \pmod{3}, thus p0(mod3)p \equiv 0 \pmod{3}. Let p=3kp = 3k,

then 9k2=3q2  

  q2=3k29k^2 = 3q^2 \implies q^2 = 3k^2,

so q0(mod3)q \equiv 0 \pmod{3}. Contradiction (coprime).

(c) Simplify given ABA \subset B:
(i) (AB)cBc(A \cup B)^c \cup B^c

Solution:
Since ABA \subset B, AB=BA \cup B = B, so (AB)c=Bc(A \cup B)^c = B^c,

thus BcBc=BcB^c \cup B^c = B^c.

(ii) (AB)Bc(A \cup B) \cap B^c
Solution:
AB=BA \cup B = B, so BBc=B \cap B^c = \emptyset.

(d) Rationalize denominators:
(i) 213\frac{\sqrt{2}-1}{\sqrt{3}}

Solution:

213X33

=(21)33

=633\frac{\sqrt{2}-1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{(\sqrt{2}-1)\sqrt{3}}{3} = \frac{\sqrt{6} - \sqrt{3}}{3}

(ii) 1+2132\frac{1+\sqrt{2}}{1-3\sqrt{2}}

Solution:

1+2132X1+321+32

=(1+2)(1+32)118

=1X1+1X32+2X1+2X3217

=1+32+2+617

=7+4217\frac{1+\sqrt{2}}{1-3\sqrt{2}} \cdot \frac{1+3\sqrt{2}}{1+3\sqrt{2}} = \frac{(1+\sqrt{2})(1+3\sqrt{2})}{1 - 18} = \frac{1 \cdot 1 + 1 \cdot 3\sqrt{2} + \sqrt{2} \cdot 1 + \sqrt{2} \cdot 3\sqrt{2}}{-17} = \frac{1 + 3\sqrt{2} + \sqrt{2} + 6}{-17} = \frac{7 + 4\sqrt{2}}{-17}

(e) Express as pq\frac{p}{q} (coprime):

(i) 12.323112.3231

Solution:

12.3231=12323110000,GCD(123231,10000)=1.12.3231 = \frac{123231}{10000}, \quad \text{GCD}(123231, 10000) = 1.

Final Answer: 12323110000\frac{123231}{10000}

(ii) 0.543-0.543

Solution:

0.543=5431000,GCD(543,1000)=1.-0.543 = -\frac{543}{1000}, \quad \text{GCD}(543,1000)=1.

Final Answer: 5431000-\frac{543}{1000}


QUESTION THREE

(a) Define:
(i) Power set
Set of all subsets of a set.
(ii) Asymptote
A line that a curve approaches as it tends to infinity.

(b) Binary operation ab=ab+b5a * b = ab + b - 5 on Z\mathbb{Z}.
(i) Associative? Commutative?
Solution:

  • Commutative? ab=ab+b5a * b = ab + b - 5, ba=ba+a5=ab+a5b * a = ba + a - 5 = ab + a - 5. Not equal (e.g., a=1,b=0a=1,b=0: 10=51*0 = -5, 01=40*1 = -4). No.
  • Associative? Check (ab)c=a(bc)(a*b)*c = a*(b*c):
    • (ab)c=(ab+b5)c=(ab+b5)c+c5=abc+bc5c+c5=abc+bc4c5(a*b)*c = (ab + b - 5)*c = (ab + b - 5)c + c - 5 = abc + bc - 5c + c - 5 = abc + bc - 4c - 5
    • a(bc)=a(bc+c5)=a(bc+c5)+(bc+c5)5=abc+ac5a+bc+c10a*(b*c) = a*(bc + c - 5) = a(bc + c - 5) + (bc + c - 5) - 5 = abc + ac - 5a + bc + c - 10
      Not equal (e.g., a=1,b=1,c=1a=1,b=1,c=1: left = 1+1-4-5=-7, right=1+1-5+1+1-10=-11)). No.

(ii) (41)2(4 * 1) * 2 and 4(12)4 * (1 * 2)

Solution:

  • 41=41+15=04 * 1 = 4 \cdot 1 + 1 - 5 = 0, then 02=02+25=30 * 2 = 0 \cdot 2 + 2 - 5 = -3
  • 12=12+25=11 * 2 = 1 \cdot 2 + 2 - 5 = -1, then 4(1)=4(1)+(1)5=104 * (-1) = 4 \cdot (-1) + (-1) - 5 = -10
    Final Answer: 3-3 and 10-10

(c) Domain and range:
(i) f(x)=7x2f(x) = \frac{7}{x-2}

Solution:
Domain: x2x \neq 2 (R{2}\mathbb{R} \setminus \{2\}), Range: y0y \neq 0 (R{0}\mathbb{R} \setminus \{0\}).

(ii) f(x)=3+5x1f(x) = 3 + \sqrt{5x - 1}
Solution:
Domain: 5x10    x155x - 1 \geq 0 \implies x \geq \frac{1}{5} ([15,)[\frac{1}{5}, \infty)), Range: [3,)[3, \infty).

(d) f(x)=2x2+6x+4f(x) = 2x^2 + 6x + 4
(i) Complete the square

Solution:

2(x2+3x)+4=2(x2+3x+(32)294)+4

=2((x+32)294)+4

=2(x+32)292+4

=2(x+32)2122(x^2 + 3x) + 4 = 2\left(x^2 + 3x + \left(\frac{3}{2}\right)^2 - \frac{9}{4}\right) + 4 = 2\left(\left(x + \frac{3}{2}\right)^2 - \frac{9}{4}\right) + 4 = 2\left(x + \frac{3}{2}\right)^2 - \frac{9}{2} + 4 = 2\left(x + \frac{3}{2}\right)^2 - \frac{1}{2}

(ii) Sketch graph

  • Turning point: (1.5,0.5)(-1.5, -0.5)
  • yy-intercept: x=0x=0, y=4y=4
  • xx-intercepts: 2x2+6x+4=0    x2+3x+2=0    (x+1)(x+2)=02x^2 + 6x + 4 = 0 \implies x^2 + 3x + 2 = 0 \implies (x+1)(x+2)=0, so (1,0),(2,0)(-1,0), (-2,0)
  • Line of symmetry: x=1.5x = -1.5
    Graph Sketch:

(e) Roots of 3x2+2x5=03x^2 + 2x - 5 = 0 are α,β\alpha, \beta. Find equations with roots:
(i) αβ,βα\frac{\alpha}{\beta}, \frac{\beta}{\alpha}

Solution:
Sum: αβ+βα=α2+β2αβ

=(α+β)22αβαβ

=(23)22(53)53

=49+10353

=34953

=3415\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha+\beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{(-\frac{2}{3})^2 - 2(-\frac{5}{3})}{-\frac{5}{3}} = \frac{\frac{4}{9} + \frac{10}{3}}{-\frac{5}{3}} = \frac{\frac{34}{9}}{-\frac{5}{3}} = -\frac{34}{15}

Product: αββα=1\frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha} = 1
Equation: t2(sum)t+product=0  

  t2+3415t+1=0  

  15t2+34t+15=0t^2 - (\text{sum})t + \text{product} = 0 \implies t^2 + \frac{34}{15}t + 1 = 0 \implies 15t^2 + 34t + 15 = 0.

(ii) α+2,β+2\alpha + 2, \beta + 2

Solution:
Sum: (α+2)+(β+2)=α+β+4

=23+4

=103(\alpha+2) + (\beta+2) = \alpha+\beta + 4 = -\frac{2}{3} + 4 = \frac{10}{3}

Product: (α+2)(β+2)=αβ+2(α+β)+4

=53+2(23)+4

=5343+4

=3+4

=1(\alpha+2)(\beta+2) = \alpha\beta + 2(\alpha+\beta) + 4 = -\frac{5}{3} + 2(-\frac{2}{3}) + 4 = -\frac{5}{3} - \frac{4}{3} + 4 = -3 + 4 = 1

Equation: t2103t+1=0  

  3t210t+3=0t^2 - \frac{10}{3}t + 1 = 0 \implies 3t^2 - 10t + 3 = 0.


QUESTION FOUR

(a) State:
(i) Factor theorem
If f(c)=0f(c) = 0, then (xc)(x - c) is a factor of polynomial f(x)f(x).
(ii) Line symmetry of quadratic function
The axis of symmetry x=b2ax = -\frac{b}{2a} is the vertical line through the vertex.

(b) f(x)=x3+4x2+x6f(x) = x^3 + 4x^2 + x - 6
(i) Factorize
Solution:
Possible roots: ±1,2,3,6\pm1,2,3,6.
f(1)=1+4+16=0    (x1)f(1) = 1 + 4 + 1 - 6 = 0 \implies (x-1) factor.
Synthetic division:

  1 | 1  4  1  -6
       |    1  5   6
       -----------
         1  5  6   0

So f(x)=(x1)(x2+5x+6)=(x1)(x+2)(x+3)f(x) = (x-1)(x^2 + 5x + 6) = (x-1)(x+2)(x+3).

(ii) Roots
Solution:
f(x)=0    x=1,2,3f(x) = 0 \implies x = 1, -2, -3.

(iii) Sketch graph

  • Roots: (3,0),(2,0),(1,0)(-3,0), (-2,0), (1,0)
  • yy-intercept: (0,6)(0,-6)
  • Behavior: cubic, positive leading coefficient.
    Graph Sketch:

(iv) Solve x3+4x2+x60x^3 + 4x^2 + x - 6 \leq 0

Solution:
From factors, sign changes at x=3,2,1x=-3,-2,1. Test intervals:

  • x<3x < -3: ()()()=0(-)(-)(-) = - \leq 0
  • 3<x<2-3 < x < -2: ()(+)()=+≰0(-)(+)(-) = + \not\leq 0
  • 2<x<1-2 < x < 1: ()(+)(+)=0(-)(+)(+) = - \leq 0
  • x>1x > 1: (+)(+)(+)=+≰0(+)(+)(+) = + \not\leq 0
    Solution: (,3][2,1](-\infty, -3] \cup [-2, 1].

(c) f(x)=x42x1f(x) = \frac{x-4}{2x-1}, g(x)=3x1g(x) = 3x-1
(i) f1(x)f^{-1}(x)

Solution:
Let y=x42x1y = \frac{x-4}{2x-1}. Solve:
y(2x1)=x4  

  2xyy=x4  

  2xyx=y4  

  x(2y1)=y4  

  x=y42y1y(2x-1) = x-4 \implies 2xy - y = x - 4 \implies 2xy - x = y - 4 \implies x(2y-1) = y-4 \implies x = \frac{y-4}{2y-1}
So f1(x)=x42x1f^{-1}(x) = \frac{x-4}{2x-1}.

(ii) (fg)1(x)(f \circ g)^{-1}(x)

Solution:
First, fg=f(g(x))=f(3x1)=(3x1)42(3x1)1=3x56x3f \circ g = f(g(x)) = f(3x-1) = \frac{(3x-1)-4}{2(3x-1)-1} = \frac{3x-5}{6x-3}.
Now find inverse: let y=3x56x3y = \frac{3x-5}{6x-3}. Solve:
y(6x3)=3x5  

  6xy3y=3x5  

  6xy3x=3y5  

  x(6y3)=3y5  

  x=3y56y3y(6x-3) = 3x-5 \implies 6xy - 3y = 3x - 5 \implies 6xy - 3x = 3y - 5 \implies x(6y-3) = 3y-5 \implies x = \frac{3y-5}{6y-3}.

So (fg)1(x)=3x56x3

=3x53(2x1)(f \circ g)^{-1}(x) = \frac{3x-5}{6x-3} = \frac{3x-5}{3(2x-1)}.

(d) Sketch f(x)=2x2+5x+2f(x) = |2x^2 + 5x + 2|

Solution:
Factor: 2x2+5x+2=(2x+1)(x+2)2x^2 + 5x + 2 = (2x+1)(x+2).

  • Roots: x=12,2x = -\frac{1}{2}, -2
  • Vertex: x=b2a=54x = -\frac{b}{2a} = -\frac{5}{4}, y=2(2516)254+2=98=98y = |2(\frac{25}{16}) - \frac{25}{4} + 2| = |-\frac{9}{8}| = \frac{9}{8}
  • yy-intercept: 2=2|2| = 2
  • Absolute value, so above xx-axis.
    Graph Sketch:

(e) Prove sinAsinA+1+cosAsinA=2cscA\frac{\sin A}{\sin A} + \frac{1 + \cos A}{\sin A} = 2 \csc A

Solution:
Left: 1+1+cosAsinA=sinAsinA+1+cosAsinA=sinA+1+cosAsinA1 + \frac{1 + \cos A}{\sin A} = \frac{\sin A}{\sin A} + \frac{1 + \cos A}{\sin A} = \frac{\sin A + 1 + \cos A}{\sin A}.

Right: 2cscA=2sinA2 \csc A = \frac{2}{\sin A}.
Not equal. Likely typo; intended:

sinA1cosA+1+cosAsinA=sin2A+(1cos2A)(1cosA)sinA=sin2A+sin2A(1cosA)sinA=2sin2AsinA(1cosA)=2sinA1cosA\frac{\sin A}{1 - \cos A} + \frac{1 + \cos A}{\sin A} = \frac{\sin^2 A + (1 - \cos^2 A)}{(1 - \cos A)\sin A} = \frac{\sin^2 A + \sin^2 A}{(1 - \cos A)\sin A} = \frac{2\sin^2 A}{\sin A (1 - \cos A)} = \frac{2\sin A}{1 - \cos A}

Not matching. Assuming standard identity:

sinA1cosA=cscA+cotA,but not directly related.\frac{\sin A}{1 - \cos A} = \csc A + \cot A, \quad \text{but not directly related.}

Given identity is incorrect as stated.

(f) Differentiate y=ln2x33x+2y = \ln \frac{2x - 3}{3x + 2}

Solution:

y=ln(2x3)ln(3x+2)y = \ln(2x-3) - \ln(3x+2) dydx=22x333x+2

=2(3x+2)3(2x3)(2x3)(3x+2)

=6x+46x+9(2x3)(3x+2)

=13(2x3)(3x+2)\frac{dy}{dx} = \frac{2}{2x-3} - \frac{3}{3x+2} = \frac{2(3x+2) - 3(2x-3)}{(2x-3)(3x+2)} = \frac{6x+4-6x+9}{(2x-3)(3x+2)} = \frac{13}{(2x-3)(3x+2)}


QUESTION FIVE

(a) Define:
(i) Radical function
Function involving roots, e.g., f(x)=xf(x) = \sqrt{x}.
(ii) Natural exponential function
exe^x, where e2.71828e \approx 2.71828.

(b) Sketch graphs:
(i) f(x)=2+x+3f(x) = 2 + \sqrt{x + 3}

  • Domain: x3x \geq -3
  • xx-intercept: 2+x+3=0    x+3=22 + \sqrt{x+3} = 0 \implies \sqrt{x+3} = -2 (none)
  • yy-intercept: x=0x=0, y=2+3y = 2 + \sqrt{3}
  • Starts at (3,2)(-3,2), increases.
    Graph Sketch:

(ii) f(x)=2x33x2f(x) = \frac{2x-3}{3x-2}

  • Vertical asymptote: x=23x = \frac{2}{3}
  • Horizontal asymptote: y=23y = \frac{2}{3}
  • xx-intercept: 2x3=0    x=1.52x-3=0 \implies x=1.5
  • yy-intercept: x=0x=0, y=32=1.5y = \frac{-3}{-2} = 1.5
    Graph Sketch:

(c) Solve 2tanxsecx=02 \tan x - \sec x = 0 on [0,360][0^\circ, 360^\circ]

Solution:

2sinxcosx1cosx=0  

  2sinx1cosx=0  

  2sinx1=0  

  sinx=122 \frac{\sin x}{\cos x} - \frac{1}{\cos x} = 0 \implies \frac{2\sin x - 1}{\cos x} = 0 \implies 2\sin x - 1 = 0 \implies \sin x = \frac{1}{2}

Solutions: x=30,150x = 30^\circ, 150^\circ.

(d) Polynomial 2x3ax2+bx+32x^3 - a x^2 + b x + 3:
Remainder 15-15 when divided by (x+1)(x+1), remainder 46-46 when divided by (x3)(x-3).
Solution:
By Remainder Theorem:

  • f(1)=2(1)3a(1)2+b(1)+3=2ab+3=ab+1=15f(-1) = 2(-1)^3 - a(-1)^2 + b(-1) + 3 = -2 - a - b + 3 = -a - b + 1 = -15
  • f(3)=2(27)a(9)+b(3)+3=549a+3b+3=9a+3b+57=46f(3) = 2(27) - a(9) + b(3) + 3 = 54 - 9a + 3b + 3 = -9a + 3b + 57 = -46

Equations:

ab=16(1)- a - b = -16 \quad \text{(1)} 9a+3b=103(2)-9a + 3b = -103 \quad \text{(2)}

Multiply (1) by 3: 3a3b=48-3a - 3b = -48
Add to (2): 12a=151    a=15112-12a = -151 \implies a = \frac{151}{12}?

Check:
From (1): a+b=16a + b = 16
From (2): 9a3b=1039a - 3b = 103 (multiplied by -1)

Multiply (1) by 3: 3a+3b=483a + 3b = 48
Add to (2): 12a=151    a=1511212a = 151 \implies a = \frac{151}{12}
Then b=1615112=19215112=4112b = 16 - \frac{151}{12} = \frac{192 - 151}{12} = \frac{41}{12}.

Final Answer: a=15112,b=4112a = \frac{151}{12}, b = \frac{41}{12}

(e) Partial fractions:
(i) x7(x+1)(x2+1)\frac{x-7}{(x+1)(x^2+1)}

Solution:
Assume:

x7(x+1)(x2+1)=Ax+1+Bx+Cx2+1\frac{x-7}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+1}

Multiply:
x7=A(x2+1)+(Bx+C)(x+1)x-7 = A(x^2+1) + (Bx+C)(x+1)
Set x=1x = -1: 17=A(1+1)  

  8=2A    A=4-1-7 = A(1+1) \implies -8 = 2A \implies A = -4

Expand:

x7=4(x2+1)+(Bx+C)(x+1)=4x24+Bx2+Bx+Cx+C

=(B4)x2+(B+C)x+(C4)x - 7 = -4(x^2+1) + (Bx+C)(x+1) = -4x^2 -4 + Bx^2 + Bx + Cx + C = (B-4)x^2 + (B+C)x + (C-4)

Compare coefficients:

  • x2x^2: B4=0    B=4B-4 = 0 \implies B = 4
  • xx: B+C=1
  •   4+C=1  
  •   C=3B+C = 1 \implies 4 + C = 1 \implies C = -3
  • Constant: C4=34=7C-4 = -3-4 = -7 (matches)
    So:

4x+1+4x3x2+1\frac{-4}{x+1} + \frac{4x-3}{x^2+1}

(ii) 12(x3)(x4)\frac{12}{(x-3)(x-4)}

Solution:

12(x3)(x4)=Ax3+Bx4\frac{12}{(x-3)(x-4)} = \frac{A}{x-3} + \frac{B}{x-4}

12=A(x4)+B(x3)12 = A(x-4) + B(x-3)
Set x=3x=3: 12=A(1)  

  A=1212 = A(-1) \implies A = -12

Set x=4x=4: 12=B(1)  

  B=1212 = B(1) \implies B = 12

So:

12x3+12x4\frac{-12}{x-3} + \frac{12}{x-4}

(f) Solve:

(i) log2(x2x+2)=1+2log2x\log_2 (x^2 - x + 2) = 1 + 2\log_2 x

Solution:
RHS: 1+log2x2=log22+log2x2=log2(2x2)1 + \log_2 x^2 = \log_2 2 + \log_2 x^2 = \log_2 (2x^2)
So:
x2x+2=2x2  

  x2+x2=0  

  (x+2)(x1)=0x^2 - x + 2 = 2x^2 \implies x^2 + x - 2 = 0 \implies (x+2)(x-1) = 0
Solutions: x=1,x=2x=1, x=-2. But domain: x>0x>0 and x2x+2>0x^2 - x + 2 > 0 (always true). So x=1x=1 (since x>0x>0).

(ii) 32x+1+263x9=03^{2x+1} + 26 \cdot 3^x - 9 = 0

Solution:
Let u=3xu = 3^x:
3(3x)2+263x9=0  

  3u2+26u9=03 \cdot (3^x)^2 + 26 \cdot 3^x - 9 = 0 \implies 3u^2 + 26u - 9 = 0
Discriminant: 676+108=784=282676 + 108 = 784 = 28^2
u=26±286u = \frac{-26 \pm 28}{6}

  • u=26=13  
  •   3x=13  
  •   x=1u = \frac{2}{6} = \frac{1}{3} \implies 3^x = \frac{1}{3} \implies x = -1
  • u=546=9u = \frac{-54}{6} = -9 (invalid, since 3x>03^x > 0)
    Final Answer: x=1x = -1

@Dr. Microbiota


END OF SOLUTIONS