INTRODUCTION TO MATHEMATICAL METHODS

TEST ONE JULY INTAKE 2023

DATE : 24th August, 2023


INSTRUCTIONS

  1. Duration: 2 Hours.
  2. Write your Computer Number on each answer paper used. Answer all questions and show all the necessary work to earn full marks.

QUESTION ONE

(a) Define:
(i) Singleton set
A set with exactly one element.
(ii) Power set
The set of all subsets of a given set.

(b) Write set A={x:x24=0}A = \{x : x^2 - 4 = 0\} in Roster form.
Solution:
x24=0    x=±2x^2 - 4 = 0 \implies x = \pm 2.
Final Answer: A={2,2}A = \{-2, 2\}

(c) Rationalize denominator 7+1135\frac{\sqrt{7} + 1}{1 - 3\sqrt{5}}

Solution:

7+1135X1+351+35

=(7+1)(1+35)(1)2(35)2

=7+335+1+35145

=1+7+35+33544\frac{\sqrt{7} + 1}{1 - 3\sqrt{5}} \cdot \frac{1 + 3\sqrt{5}}{1 + 3\sqrt{5}} = \frac{(\sqrt{7} + 1)(1 + 3\sqrt{5})}{(1)^2 - (3\sqrt{5})^2} = \frac{\sqrt{7} + 3\sqrt{35} + 1 + 3\sqrt{5}}{1 - 45} = \frac{1 + \sqrt{7} + 3\sqrt{5} + 3\sqrt{35}}{-44}

Final Answer: 1+7+35+33544-\frac{1 + \sqrt{7} + 3\sqrt{5} + 3\sqrt{35}}{44}

(d) Simplify [(AcB)c(ABc)]c[(A^c \cup B)^c \cap (A \cap B^c)]^c

Solution:

(AcB)c=ABc(De Morgan)(A^c \cup B)^c = A \cap B^c \quad \text{(De Morgan)}

[(ABc)(ABc)]c

=(ABc)c

=AcB(De Morgan)[(A \cap B^c) \cap (A \cap B^c)]^c = (A \cap B^c)^c = A^c \cup B \quad \text{(De Morgan)}

Final Answer: AcBA^c \cup B

(e) E=(,+)E = (-\infty, +\infty), A=[15,10]A = [-15, 10], C=[5,30)C = [5, 30). Find ACA - C

Solution:
AC={xAxC}=[15,10][5,30)=[15,5)A - C = \{x \in A \mid x \notin C\} = [-15, 10] \setminus [5, 30) = [-15, 5).
Final Answer: [15,5)

To find the set difference ACA - C, we subtract the elements of set C=[5,30)C = [5, 30) from set A=[15,10]A = [-15, 10].

🔍 Step-by-step:

  • Set AA includes all real numbers from 15-15 to 1010, inclusive.
  • Set CC includes all real numbers from 55 to just below 3030, not including 30.
  • The overlap between AA and CC is from 55 to 1010, since both sets include that interval.

📘 So:

AC=[15,5)A - C = [-15, 5)

This is the portion of AA that does not intersect with CC.

✅ Final Answer:

AC=[15,5)

[-15, 5)

(f) Binary operation ab=a2+b2a * b = a^2 + b^2 on rationals. Find (13)2(1 * 3) * 2 and 1(32)1 * (3 * 2). Is it associative?

Solution:

  • 13=12+32=1+9=101 * 3 = 1^2 + 3^2 = 1 + 9 = 10, then 102=100+4=10410 * 2 = 100 + 4 = 104.
  • 32=9+4=133 * 2 = 9 + 4 = 13, then 113=1+169=1701 * 13 = 1 + 169 = 170.
  • 104170104 \neq 170, so not associative.
    Final Answer: (13)2=104(1 * 3) * 2 = 104, 1(32)=1701 * (3 * 2) = 170, not associative.

QUESTION TWO

(a) Define:
(i) Identity relation
A relation where every element is related only to itself: {(a,a)aA}\{(a, a) \mid a \in A\}.
(ii) Domain
The set of all first elements in the ordered pairs of a relation.

(b) Relation R\mathfrak{R} on A={1,2,3,4}A = \{1,2,3,4\} given by R={(x,y):x is divisible by y}\mathfrak{R} = \{(x,y) : x \text{ is divisible by } y\}.
Solution:

  • R={(1,1),(2,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,4)}\mathfrak{R} = \{(1,1), (2,1), (2,2), (3,1), (3,3), (4,1), (4,2), (4,4)\}
  • Identity? No (not only self-pairs).
  • Reflexive? Yes (all self-pairs present).
  • Symmetric? No (e.g., (2,1)R(2,1) \in \mathfrak{R} but (1,2)R(1,2) \notin \mathfrak{R}).
  • Transitive? Yes (e.g., (4,2),(2,1)    (4,1)R(4,2), (2,1) \implies (4,1) \in \mathfrak{R}).
  • Equivalence? No (not symmetric).

(c) Show f(x)=2x+3x3f(x) = \frac{2x + 3}{x - 3} is one-to-one and find inverse.

Solution:

  • One-to-one: Assume f(a)=f(b)f(a) = f(b):

2a+3a3=2b+3b3  

  (2a+3)(b3)

=(2b+3)(a3)\frac{2a + 3}{a - 3} = \frac{2b + 3}{b - 3} \implies (2a + 3)(b - 3) = (2b + 3)(a - 3)

Expand: 2ab6a+3b9=2ab6b+3a9  

  6a+3b=6b+3a  

  9a=9b  

  a=b2ab - 6a + 3b - 9 = 2ab - 6b + 3a - 9 \implies -6a + 3b = -6b + 3a \implies -9a = -9b \implies a = b.

  • Inverse: Let y=2x+3x3y = \frac{2x + 3}{x - 3}. Solve:

y(x3)=2x+3  

  yx3y=2x+3  

  yx2x=3y+3  

  x(y2)=3(y+1)  

  x=3(y+1)y2y(x - 3) = 2x + 3 \implies yx - 3y = 2x + 3 \implies yx - 2x = 3y + 3 \implies x(y - 2) = 3(y + 1) \implies x = \frac{3(y + 1)}{y - 2}

So f1(x)=3(x+1)x2f^{-1}(x) = \frac{3(x + 1)}{x - 2}.

(d) A={1,2,3,4}A = \{1,2,3,4\}, f={(1,4),(2,1),(3,3),(4,2)}f = \{(1,4),(2,1),(3,3),(4,2)\}, g={(1,3),(2,1),(3,2),(4,4)}g = \{(1,3),(2,1),(3,2),(4,4)\}. Find gfg \circ f

Solution:
gfg \circ f: Apply ff then gg.

  • f(1)=4f(1) = 4, g(4)=4    (1,4)g(4) = 4 \implies (1,4)
  • f(2)=1f(2) = 1, g(1)=3    (2,3)g(1) = 3 \implies (2,3)
  • f(3)=3f(3) = 3, g(3)=2    (3,2)g(3) = 2 \implies (3,2)
  • f(4)=2f(4) = 2, g(2)=1    (4,1)g(2) = 1 \implies (4,1)
    Final Answer: {(1,4),(2,3),(3,2),(4,1)}\{(1,4), (2,3), (3,2), (4,1)\}

(e) Domain and range of f(x)=4+3x1f(x) = 4 + \sqrt{3x - 1}

Solution:

  • Domain: 3x10    x133x - 1 \geq 0 \implies x \geq \frac{1}{3}, so [13,)[\frac{1}{3}, \infty).
  • Range: Minimum at x=13x = \frac{1}{3}: f(13)=4+0=4f(\frac{1}{3}) = 4 + 0 = 4, increases to \infty, so [4,)[4, \infty).
    Final Answer: Domain: [13,)[\frac{1}{3}, \infty), Range: [4,)[4, \infty).

@Dr. Microbiota


END OF SOLUTIONS