INTRODUCTION TO MATHEMATICAL METHODS DIFFERED QUIZ/TEST TWO JULY INTAKE 2024

DATE : WEDNESDAY 6th NOVEMBER, 2024


QUESTION ONE

a. Two functions ff and gg are defined as f(x)=x+62x3f(x) = \frac{x + 6}{2x - 3} and g(x)=5x8g(x) = 5x - 8.
i. Find the value of gg of f(3)f(3) [2]
ii. Find gg of f1(x)f^{-1}(x) [3]


Solution to a(i):
Step 1: Compute f(3)f(3).

f(3)=3+62(3)3

=963

=93

=3.f(3) = \frac{3 + 6}{2(3) - 3} = \frac{9}{6 - 3} = \frac{9}{3} = 3.

Step 2: Compute g(f(3))=g(3)g(f(3)) = g(3).

g(3)=5(3)8

=158

=7.g(3) = 5(3) - 8 = 15 - 8 = 7.

Answer: 7\boxed{7}


Solution to a(ii):
Step 1: Find f1(x)f^{-1}(x).
Let y=f(x)=x+62x3y = f(x) = \frac{x + 6}{2x - 3}. Solve for xx:

y(2x3)=x+6  

  2xy3y=x+6  

  2xyx=3y+6  

  x(2y1)=3y+6.

y(2x - 3) = x + 6 \implies 2xy - 3y = x + 6 \implies 2xy - x = 3y + 6 \implies x(2y - 1) = 3y + 6. x=3y+62y1  

  f1(x)=3x+62x1.x = \frac{3y + 6}{2y - 1} \implies f^{-1}(x) = \frac{3x + 6}{2x - 1}.

Step 2: Compute g(f1(x))=g(3x+62x1)g(f^{-1}(x)) = g\left(\frac{3x + 6}{2x - 1}\right).

g(3x+62x1)=5(3x+62x1)8

=5(3x+6)2x18

=15x+302x18(2x1)2x1.g\left(\frac{3x + 6}{2x - 1}\right) = 5\left(\frac{3x + 6}{2x - 1}\right) - 8 = \frac{5(3x + 6)}{2x - 1} - 8 = \frac{15x + 30}{2x - 1} - \frac{8(2x - 1)}{2x - 1}.

=15x+3016x+82x1

=x+382x1.= \frac{15x + 30 - 16x + 8}{2x - 1} = \frac{-x + 38}{2x - 1}.

Answer: x+382x1\boxed{\dfrac{-x + 38}{2x - 1}}


b. Let f(x)=2x25x+3f(x) = 2x^2 - 5x + 3 be a quadratic function.
i. Find the turning point, x-intercepts, and y-intercepts for this function.
ii. Hence, sketch f(x)f(x). [5]


Solution to b(i):
Turning Point (Vertex):

x=b2a

=52X2

=54

=1.25.

x = -\frac{b}{2a} = \frac{5}{2 \cdot 2} = \frac{5}{4} = 1.25. f(1.25)=2(1.25)25(1.25)+3

=2(1.5625)6.25+3

=3.1256.25+3

=0.125.f(1.25) = 2(1.25)^2 - 5(1.25) + 3 = 2(1.5625) - 6.25 + 3 = 3.125 - 6.25 + 3 = -0.125.

Vertex: (1.25,0.125)\boxed{(1.25, -0.125)} or (54,18)\left(\dfrac{5}{4}, -\dfrac{1}{8}\right).

x-intercepts: Solve 2x25x+3=02x^2 - 5x + 3 = 0.

x=5±(5)24234

=5±25244

=5±14.x = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 2 \cdot 3}}{4} = \frac{5 \pm \sqrt{25 - 24}}{4} = \frac{5 \pm 1}{4}.

x=64=1.5orx=44=1.x = \frac{6}{4} = 1.5 \quad \text{or} \quad x = \frac{4}{4} = 1.

x-intercepts: (1,0),(1.5,0)\boxed{(1, 0), (1.5, 0)} or (1,0),(32,0)\left(1, 0\right), \left(\dfrac{3}{2}, 0\right).

y-intercept: f(0)=3f(0) = 3.
y-intercept: (0,3)\boxed{(0, 3)}.


Solution to b(ii): Sketch of f(x)f(x)

  • Shape: Parabola opening upwards (since a=2>0a = 2 > 0).
  • Vertex: (1.25,0.125)\left(1.25, -0.125\right).
  • x-intercepts: (1,0)(1, 0), (1.5,0)(1.5, 0).
  • y-intercept: (0,3)(0, 3).

Graph:


C. Show that f(x)=7x5+x33xf(x) = 7x^5 + x^3 - 3x is an odd but not even function. [2]

Solution:
Odd Function Test: f(x)=f(x)f(-x) = -f(x).

f(x)=7(x)5+(x)33(x)

=7x5x3+3x

=(7x5+x33x)

=f(x).f(-x) = 7(-x)^5 + (-x)^3 - 3(-x) = -7x^5 - x^3 + 3x = -(7x^5 + x^3 - 3x) = -f(x).

Thus, ff is odd.

Even Function Test: f(x)=f(x)f(-x) = f(x).

f(x)=7x5x3+3xf(x)(since f(x)=7x5+x33x).f(-x) = -7x^5 - x^3 + 3x \neq f(x) \quad (\text{since } f(x) = 7x^5 + x^3 - 3x).

Thus, ff is not even.
Answer: Odd but not even\boxed{\text{Odd but not even}}


d. Given two equations xy=12xy = 12 and 2x2+3xyy=582x^2 + 3xy - y = 58. Solve simultaneously, given x>yx > y. [5]


Solution:
Step 1: Substitute y=12xy = \frac{12}{x} into the second equation:

2x2+3x(12x)12x=58  

  2x2+3612x=58.2x^2 + 3x\left(\frac{12}{x}\right) - \frac{12}{x} = 58 \implies 2x^2 + 36 - \frac{12}{x} = 58.

Step 2: Multiply through by xx to eliminate denominator:

2x3+36x12=58x  

  2x322x12=0.2x^3 + 36x - 12 = 58x \implies 2x^3 - 22x - 12 = 0.

Step 3: Divide by 2:

x311x6=0.x^3 - 11x - 6 = 0.

Step 4: Factor using Rational Root Theorem. Possible roots: ±1,2,3,6\pm1, 2, 3, 6.
Try x=3x = 3: 3311(3)6=27336=1203^3 - 11(3) - 6 = 27 - 33 - 6 = -12 \neq 0.
Try x=2x = -2: (2)311(2)6=8+226=80(-2)^3 - 11(-2) - 6 = -8 + 22 - 6 = 8 \neq 0.
Try x=3x = -3: (3)311(3)6=27+336=0(-3)^3 - 11(-3) - 6 = -27 + 33 - 6 = 0.
Thus, (x+3)(x + 3) is a factor.

Step 5: Polynomial division:

x311x6÷(x+3).x^3 - 11x - 6 \div (x + 3).

Quotient: x23x2x^2 - 3x - 2.

x311x6 = 0

=(x+3)(x23x2)=0.x^3 - 11x - 6 = (x + 3)(x^2 - 3x - 2) = 0.

Step 6: Solve:
x+3=0  

  x=3x + 3 = 0 \implies x = -3.

AND
x23x2=0  

  x=3±9+82

x=3±172x^2 - 3x - 2 = 0 \implies x = \frac{3 \pm \sqrt{9 + 8}}{2} = \frac{3 \pm \sqrt{17}}{2}.

Step 7: Find corresponding y=12xy = \frac{12}{x}:

  • If x=3x = -3, y=123=4y = \frac{12}{-3} = -4.
  • If x=3+1723.56x = \frac{3 + \sqrt{17}}{2} \approx 3.56, y=123.563.37y = \frac{12}{3.56} \approx 3.37.
  • If x=31720.56x = \frac{3 - \sqrt{17}}{2} \approx -0.56, y=120.5621.43y = \frac{12}{-0.56} \approx -21.43.

Step 8: Apply x>yx > y:

  • (3,4)(-3, -4): 3>4-3 > -4
  • (3.56,3.37)(3.56, 3.37): 3.56>3.373.56 > 3.37
  • (0.56,21.43)(-0.56, -21.43): 0.56>21.43-0.56 > -21.43
    All pairs satisfy x>yx > y.

Answer: (3,4)\boxed{(-3, -4)}, (3+172,243+17)\boxed{\left( \dfrac{3 + \sqrt{17}}{2}, \dfrac{24}{3 + \sqrt{17}} \right)}, (3172,24317)\boxed{\left( \dfrac{3 - \sqrt{17}}{2}, \dfrac{24}{3 - \sqrt{17}} \right)}


e. Find kk such that x23kx+(k1)=0x^2 - 3kx + (k - 1) = 0 has equal roots. [4]


Solution:
Condition for equal roots: Discriminant D=0D = 0.

D=b24ac

=(3k)24(1)(k1)

=9k24k+4.D = b^2 - 4ac = (-3k)^2 - 4(1)(k - 1) = 9k^2 - 4k + 4.

Set D=0D = 0:

9k24k+4=0.9k^2 - 4k + 4 = 0.

Solve for kk:

k=4±(4)249418

=4±1614418

=4±12818.k = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 9 \cdot 4}}{18} = \frac{4 \pm \sqrt{16 - 144}}{18} = \frac{4 \pm \sqrt{-128}}{18}.

128=i128\sqrt{-128} = i\sqrt{128} (complex). Recheck discriminant:

D=(3k)24(1)(k1)

=9k24(k1)

=9k24k+4.

D = (-3k)^2 - 4(1)(k - 1) = 9k^2 - 4(k - 1) = 9k^2 - 4k + 4. D=9k24k+4    Discriminant of this quadratic: (4)2494=16144=128<0.D = 9k^2 - 4k + 4 \implies \text{Discriminant of this quadratic: } (-4)^2 - 4 \cdot 9 \cdot 4 = 16 - 144 = -128 < 0.

No real kk satisfies D=0D = 0. Error in problem?
Assuming real kk expected:

D=b24ac

=(3k)24(1)(k1)

=9k24k+4.D = b^2 - 4ac = (-3k)^2 - 4(1)(k - 1) = 9k^2 - 4k + 4.

Minimum value of DD: Vertex at k=418=29k = \frac{4}{18} = \frac{2}{9},

D(29)=9(481)4(29)+4

=368189+4

=4989+4

=49+4>0.D\left(\frac{2}{9}\right) = 9\left(\frac{4}{81}\right) - 4\left(\frac{2}{9}\right) + 4 = \frac{36}{81} - \frac{8}{9} + 4 = \frac{4}{9} - \frac{8}{9} + 4 = -\frac{4}{9} + 4 > 0.

Correction:

D=(3k)24(1)(k1)

=9k24(k1)

=9k24k+4.D = (-3k)^2 - 4(1)(k - 1) = 9k^2 - 4(k - 1) = 9k^2 - 4k + 4.

Set to zero: 9k24k+4=09k^2 - 4k + 4 = 0.
Discriminant: d=(4)2494=16144=128<0d = (-4)^2 - 4 \cdot 9 \cdot 4 = 16 - 144 = -128 < 0.
No real solutions. Possible typo in problem?


QUESTION TWO

a. Resolve 2x3+x215x5(x+3)(x2)\frac{2x^3 + x^2 - 15x - 5}{(x + 3)(x - 2)} into partial fractions. [5]


Solution:
Step 1: Degree check: Numerator degree (3) > Denominator degree (2). Perform polynomial division.
Divide 2x3+x215x52x^3 + x^2 - 15x - 5 by (x+3)(x2)=x2+x6(x+3)(x-2) = x^2 + x - 6:

2x1

x2+x6)2x3+x215x5

(2x3+2x212x)

x23x5

(x2x+6)

2x11

\begin{array}{r} 2x - 1 \\ x^2 + x - 6 \overline{)2x^3 + x^2 - 15x - 5} \\ \underline{-(2x^3 + 2x^2 - 12x)} \\ -x^2 - 3x - 5 \\ \underline{-(-x^2 - x + 6)} \\ -2x - 11 \\ \end{array}

So,

2x3+x215x5(x+3)(x2)=2x1+2x11(x+3)(x2).\frac{2x^3 + x^2 - 15x - 5}{(x + 3)(x - 2)} = 2x - 1 + \frac{-2x - 11}{(x + 3)(x - 2)}.

Step 2: Partial fractions for remainder:

2x11(x+3)(x2)=Ax+3+Bx2.\frac{-2x - 11}{(x + 3)(x - 2)} = \frac{A}{x + 3} + \frac{B}{x - 2}.

2x11=A(x2)+B(x+3).-2x - 11 = A(x - 2) + B(x + 3).

Step 3: Solve for AA and BB:
Set x=3x = -3:

2(3)11=A(32)  

  611=A(5)  

  5=5A  

  A=1.-2(-3) - 11 = A(-3 - 2) \implies 6 - 11 = A(-5) \implies -5 = -5A \implies A = 1.

Set x=2x = 2:

2(2)11=B(2+3)  

  411=5B  

  15=5B  

  B=3.-2(2) - 11 = B(2 + 3) \implies -4 - 11 = 5B \implies -15 = 5B \implies B = -3.

Step 4: Combine:

2x3+x215x5(x+3)(x2)=2x1+1x+33x2.\frac{2x^3 + x^2 - 15x - 5}{(x + 3)(x - 2)} = 2x - 1 + \frac{1}{x + 3} - \frac{3}{x - 2}.

Answer: 2x1+1x+33x2\boxed{2x - 1 + \dfrac{1}{x + 3} - \dfrac{3}{x - 2}}


b. Divide P(x)=x4+2x33x2+4x4P(x) = x^4 + 2x^3 - 3x^2 + 4x - 4 by x+2x + 2. Write quotient q(x)q(x) and remainder r(x)r(x). [5]


Solution:
Use synthetic division (root = 2-2):

212344206201031024

To divide
P(x) = x⁴ + 2x³ − 3x² + 4x − 4
by x + 2, we use synthetic division with −2 (the root of x + 2).

  • Coefficients of P(x): 1 2 −3 4 −4
  • Bring down 1.
  • Multiply 1 × (−2) = −2, add to 2 → 0.
  • Multiply 0 × (−2) = 0, add to −3 → −3.
  • Multiply −3 × (−2) = 6, add to 4 → 10.
  • Multiply 10 × (−2) = −20, add to −4 → −24.

From these steps, the quotient polynomial is
q(x) = x³ + 0x² − 3x + 10 ≡ x³ − 3x + 10

and the remainder is
r(x) = −24

\begin{array}{r|rrrrr} -2 & 1 & 2 & -3 & 4 & -4 \\ & & -2 & 0 & 6 & -20 \\ \hline & 1 & 0 & -3 & 10 & -24 \\ \end{array}

Interpretation:

  • Quotient: x3+0x23x+10=x33x+10x^3 + 0x^2 - 3x + 10 = \boxed{x^3 - 3x + 10}
  • Remainder: 24\boxed{-24}

c. Solve the equations:
i. log9(x+3)+log9(x3)=log3x\log_9(x + 3) + \log_9(x - 3) = \log_3 x [4]
ii. 32x3x=23^{2x} - 3^x = -2 [3]


Solution to c(i):
Step 1: Domain: x>3x > 3 (since x+3>0x + 3 > 0, x3>0x - 3 > 0, x>0x > 0).
Step 2: Use logba=logkalogkb\log_b a = \frac{\log_k a}{\log_k b}. Rewrite all as base 3:

log9(a)=log3alog39=log3a2.\log_9(a) = \frac{\log_3 a}{\log_3 9} = \frac{\log_3 a}{2}.

Equation:

12log3(x+3)+12log3(x3)=log3x.\frac{1}{2} \log_3(x + 3) + \frac{1}{2} \log_3(x - 3) = \log_3 x.

Step 3: Simplify:

12[log3(x+3)+log3(x3)]=log3x  

  log3((x+3)(x3))12=log3x.\frac{1}{2} \left[ \log_3(x + 3) + \log_3(x - 3) \right] = \log_3 x \implies \log_3 \left( (x + 3)(x - 3) \right)^{\frac{1}{2}} = \log_3 x.

log3x29=log3x.\log_3 \sqrt{x^2 - 9} = \log_3 x.

Step 4: Equate arguments:

x29=x(since logba=logbc    a=c).

\sqrt{x^2 - 9} = x \quad \text{(since $\log_b a = \log_b c \implies a = c$)}. x29=x2  

  9=0Contradiction!x^2 - 9 = x^2 \implies -9 = 0 \quad \text{Contradiction!}

Re-examine: x29=x\sqrt{x^2 - 9} = x only if x0x \geq 0, but squaring:

x29=x2  

  9=0impossible.x^2 - 9 = x^2 \implies -9 = 0 \quad \text{impossible}.

Step 5: Alternative approach:

log3x29=log3x  

  x29=x.\log_3 \sqrt{x^2 - 9} = \log_3 x \implies \sqrt{x^2 - 9} = x.

This holds only if x29=x2x^2 - 9 = x^2 and x0x \geq 0, which is impossible. Check domain: x>3x > 3.
Correct step after log equality:

x29=x  

  x29=x2false.\sqrt{x^2 - 9} = x \implies x^2 - 9 = x^2 \quad \text{false}.

Error in step: log3x29=log3x\log_3 \sqrt{x^2 - 9} = \log_3 x implies x29=x\sqrt{x^2 - 9} = x only if the log is one-to-one, but xx must be positive, which is true.
Correct solution:
From:

log3x29=log3x    x29=x.\log_3 \sqrt{x^2 - 9} = \log_3 x \implies \sqrt{x^2 - 9} = x.

Square both sides:

x29=x2    9=0no solution.x^2 - 9 = x^2 \implies -9 = 0 \quad \text{no solution}.

Possible extraneous solution?  Check original equation.

At x=3x = 3 (boundary):
Left side: log9(6)+log9(0)\log_9(6) + \log_9(0) undefined.


Conclusion: No solution.


Solution to c(ii):
Step 1: Let u=3xu = 3^x. Then 32x=u23^{2x} = u^2.

u2u=2  

  u2u+2=0.u^2 - u = -2 \implies u^2 - u + 2 = 0.

Step 2: Discriminant: d=(1)24X1X2

=18

=7<0d = (-1)^2 - 4 \cdot 1 \cdot 2 = 1 - 8 = -7 < 0.
No real solutions.
Answer: No real solutions\boxed{\text{No real solutions}}


d. Sketch the graph of f(x)=4x3f(x) = 4^x - 3. Show all intercepts. [3]


Solution:
Intercepts:

  • y-intercept: f(0)=403=13=2f(0) = 4^0 - 3 = 1 - 3 = -2. Point: (0,2)(0, -2).
  • x-intercept: 4x3=0    4x=3    x=log430.7924^x - 3 = 0 \implies 4^x = 3 \implies x = \log_4 3 \approx 0.792. Point: (log43,0)(\log_4 3, 0).
    Behavior:
  • As xx \to \infty, f(x)f(x) \to \infty.
  • As xx \to -\infty, 4x04^x \to 0, so f(x)3f(x) \to -3 (horizontal asymptote: y=3y = -3).
    Graph:

Note: Graph passes through (0,2)(0, -2), (log43,0)(\log_4 3, 0), and increases rapidly for x>0x > 0.


e. Let α\alpha and β\beta be roots of 3x29x+1=03x^2 - 9x + 1 = 0. Find:
i. α3+β3\alpha^3 + \beta^3
ii. The equation with roots 2αβ\frac{2\alpha}{\beta} and 2βα\frac{2\beta}{\alpha}


Solution to e(i):
Step 1: Sum α+β=ba=93=3\alpha + \beta = -\frac{b}{a} = \frac{9}{3} = 3.
Product αβ=ca=13\alpha\beta = \frac{c}{a} = \frac{1}{3}.
Step 2: Use identity:

α3+β3=(α+β)33αβ(α+β)

=333133

=273

=24.\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = 3^3 - 3 \cdot \frac{1}{3} \cdot 3 = 27 - 3 = 24.

Answer: 24\boxed{24}


Solution to e(ii):
Step 1: Let roots be r=2αβr = \frac{2\alpha}{\beta}, s=2βαs = \frac{2\beta}{\alpha}.
Step 2: Sum:

r+s=2(αβ+βα)

=2(α2+β2αβ)

.r + s = 2\left( \frac{\alpha}{\beta} + \frac{\beta}{\alpha} \right) = 2\left( \frac{\alpha^2 + \beta^2}{\alpha\beta} \right). α2+β2=(α+β)22αβ

=92X13

=923

=253.\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 9 - 2 \cdot \frac{1}{3} = 9 - \frac{2}{3} = \frac{25}{3}.

r+s=2X25313

=2X25

=50.r + s = 2 \cdot \frac{\frac{25}{3}}{\frac{1}{3}} = 2 \cdot 25 = 50.

Step 3: Product:

rs=(2αβ)(2βα)=4.rs = \left( \frac{2\alpha}{\beta} \right) \left( \frac{2\beta}{\alpha} \right) = 4.

Step 4: Quadratic equation: t2(r+s)t+rs=0t^2 - (r + s)t + rs = 0:

t250t+4=0.t^2 - 50t + 4 = 0.

Answer: t250t+4=0\boxed{t^2 - 50t + 4 = 0}

@Dr. Microbiota


END OF SOLUTIONS