INTRODUCTION TO MATHEMATICAL METHODS TEST ONE JULY INTAKE 2024

DATE : 9TH SEP 2024

INSTRUCTIONS

DURATION: 1 hr and 30 minutes .

• Answer all questions.

• Show all your working, answers with no working will not earn marks.


QUESTION ONE

a. Let A=[2,3]A = [2,3], B=[2,5]B = [2,5] and C=(3,)C = (3, \infty), also let R\mathbb{R} be the universal set, find (CcA)B(C^c \cup A)\cap B, and show the answer on the number line. [5]

Solution:

  • C=(3,)C = (3, \infty), so Cc=(,3]C^c = (-\infty, 3] (complement includes all real numbers not in CC).
  • A=[2,3]A = [2,3], so CcA=(,3][2,3]C^c \cup A = (-\infty, 3] \cup [2,3]. Since [2,3](,3][2,3] \subseteq (-\infty, 3], this union simplifies to (,3](-\infty, 3].
  • B=[2,5]B = [2,5], so (CcA)B=(,3][2,5](C^c \cup A) \cap B = (-\infty, 3] \cap [2,5]. The intersection is [2,3][2,3] because:
    • Lower bound: max(2,)=2\max(2, -\infty) = 2 (inclusive, as both sets include 2).
    • Upper bound: min(3,5)=3\min(3,5) = 3 (inclusive, as both sets include 3).
  • Thus, (CcA)B=[2,3](C^c \cup A) \cap B = [2,3].

Number Line Representation:

  • Draw a horizontal number line with points at 2, 3, and 5.
  • Shade the interval from 2 to 3 inclusive, indicated by solid dots at both endpoints.
Number line:  
<---|------●======●------|--->  
    1      2      3      4      5  

Answer: [2,3][2,3]


b. Write the following sets in roster form and set builder form respectively.
i. P={xxZ+ which is less than 10 and 2x1 is an odd number.}P = \{ x \mid x \in \mathbb{Z}^+ \text{ which is less than } 10 \text{ and } 2x - 1 \text{ is an odd number.} \} [3]

Solution:

  • Condition 1: xx is a positive integer less than 10, so x{1,2,3,4,5,6,7,8,9}x \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.
  • Condition 2: 2x12x - 1 is odd. For any integer xx, 2x2x is even, so 2x12x - 1 is always odd. This condition is always true and redundant.
  • Roster form: P={1,2,3,4,5,6,7,8,9}P = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.
  • Set builder form is already given in the question.

Answer for i:

  • Roster form: {1,2,3,4,5,6,7,8,9}\{1, 2, 3, 4, 5, 6, 7, 8, 9\}

ii. H={5,25,125,625,}H = \{ 5, 25, 125, 625, \ldots \} [3]

Solution:

  • The sequence is 51,52,53,54,5^1, 5^2, 5^3, 5^4, \ldots, so it consists of powers of 5 starting from exponent 1.
  • Set builder form: H={5nnZ+}H = \{ 5^n \mid n \in \mathbb{Z}^+ \}.

Answer for ii:

  • Set builder form: {5nnZ+}\{ 5^n \mid n \in \mathbb{Z}^+ \}

c. Express 12.3231-12.3231 in the form ab\frac{a}{b} where aa and bb are integers with no common factors such that b0b \neq 0. [4]

Solution:

  • 12.3231=12323110000-12.3231 = -\frac{123231}{10000} because:
    • 12.3231=1232311000012.3231 = \frac{123231}{10000} (since 12.3231 has 4 decimal places, so denominator is 104=1000010^4 = 10000).
    • Thus, 12.3231=12323110000-12.3231 = -\frac{123231}{10000}.
  • Simplify 12323110000\frac{123231}{10000} by finding gcd of 123231 and 10000:
    • Factorize denominator: 10000=104=(2×5)4=24×5410000 = 10^4 = (2 \times 5)^4 = 2^4 \times 5^4.
    • Numerator 123231:
      • Sum of digits: 1+2+3+2+3+1=121 + 2 + 3 + 2 + 3 + 1 = 12, divisible by 3, so 123231÷3=41077123231 \div 3 = 41077.
      • 4107741077 has no common factors with 1000010000 (since it ends with 1, not divisible by 2 or 5; and 4+1+0+7+7=194 + 1 + 0 + 7 + 7 = 19, not divisible by 3).
    • gcd(123231, 10000) = 1, so the fraction is already in simplest terms.
  • Thus, 12323110000-\frac{123231}{10000} with a=123231a = -123231, b=10000b = 10000, and no common factors.

Answer: 12323110000-\frac{123231}{10000}


d. Rationalize the denominator and simplify 2653527\frac{2\sqrt{6}-\sqrt{5}}{3\sqrt{5}-2\sqrt{7}}. [5]

Solution:

  • Multiply numerator and denominator by the conjugate of the denominator: 35+273\sqrt{5} + 2\sqrt{7}.
  • Numerator: (265)X(35+27)(2\sqrt{6} - \sqrt{5}) \cdot (3\sqrt{5} + 2\sqrt{7}): =26X35+26X275X355X27

=630+4423X 5235

=630+44215235.\begin{align*} &= 2\sqrt{6} \cdot 3\sqrt{5} + 2\sqrt{6} \cdot 2\sqrt{7} - \sqrt{5} \cdot 3\sqrt{5} - \sqrt{5} \cdot 2\sqrt{7} \\ &= 6\sqrt{30} + 4\sqrt{42} - 3 \cdot 5 - 2\sqrt{35} \\ &= 6\sqrt{30} + 4\sqrt{42} - 15 - 2\sqrt{35}. \end{align*}

  • Denominator: (35)2(27)2
  •                              =9X54X7
  •                              =4528
  •                              =17(3\sqrt{5})^2 - (2\sqrt{7})^2 = 9 \cdot 5 - 4 \cdot 7 = 45 - 28 = 17.
  • Simplified fraction: 630+4422351517\frac{6\sqrt{30} + 4\sqrt{42} - 2\sqrt{35} - 15}{17}
  • No further simplification is possible, as the terms under the radicals have no common factors.

Answer: 630+4422351517\frac{6\sqrt{30} + 4\sqrt{42} - 2\sqrt{35} - 15}{17}


e. There are 200 individuals with a skin disorder, 120 had been exposed to chemical C1C_1, 50 to chemical C2C_2, and 30 to both the chemicals C1C_1 and C2C_2. Find the number of individuals exposed to chemical C1C_1 but not chemical C2C_2. [5]

Solution:

  • Let AA = set exposed to C1C_1, A=120|A| = 120.
  • Let BB = set exposed to C2C_2, B=50|B| = 50.
  • AB=30|A \cap B| = 30 (exposed to both).
  • Number exposed to C1C_1 but not C2C_2 is AB=AAB=12030=90|A - B| = |A| - |A \cap B| = 120 - 30 = 90.
  • Total individuals (200) is not needed for this calculation.

Answer: 90


QUESTION TWO

a. Let * be an operation defined on set A={1,3,5,7}A = \{1, 3, 5, 7\} as shown in the table below.

* 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

i. Determine if the operation * is binary on set AA. [3]

Solution:

  • A binary operation requires that for every pair (a,b)A×A(a, b) \in A \times A, aba * b is defined and in AA.
  • The table covers all 4×4=164 \times 4 = 16 combinations, and all results are in {1,3,5,7}=A\{1, 3, 5, 7\} = A.
  • Thus, * is binary on AA.

Answer: Yes


ii. Determine the identity elements if exist. [3]

Solution:

  • An identity element ee satisfies ae=aa * e = a and ea=ae * a = a for all aAa \in A.
  • Check e=1e = 1:
    • a1a * 1: For a=1a=1, 11=11*1=1; a=3a=3, 31=33*1=3; a=5a=5, 51=55*1=5; a=7a=7, 71=77*1=7. So a1=aa * 1 = a.
    • 1a1 * a: For a=1a=1, 11=11*1=1; a=3a=3, 13=31*3=3; a=5a=5, 15=51*5=5; a=7a=7, 17=71*7=7. So 1a=a1 * a = a.
  • Check other elements (e.g., e=3e=3): 13=311*3=3 \neq 1, so not identity. Similarly, e=5e=5 and e=7e=7 fail.
  • Thus, the identity element is 1.

Answer: 1


iii. Solve (35)7(3 * 5) * 7 [2]

Solution:

  • From table: 35=73 * 5 = 7 (row 3, column 5).
  • Then 77=17 * 7 = 1 (row 7, column 7).
  • So (35)7=1(3 * 5) * 7 = 1.

Answer: 1


b. Let R={(1,1),(1,3),(1,4),(2,2),(3,1),(3,4),(4,1),(4,3)}R = \{(1,1), (1,3), (1,4), (2,2), (3,1), (3,4), (4,1), (4,3)\} be relation defined on set A={1,2,3,4}A = \{1,2,3,4\}. Determine whether RR is equivalent. Justify your answer. [6]

Solution:

  • "Equivalent" means equivalence relation (reflexive, symmetric, transitive).
  • Reflexive? Requires (a,a)R(a,a) \in R for all aAa \in A.
    • (1,1)R(1,1) \in R, (2,2)R(2,2) \in R, but (3,3)R(3,3) \notin R and (4,4)R(4,4) \notin R.
    • Not reflexive.
  • Symmetric? If (a,b)R(a,b) \in R, then (b,a)R(b,a) \in R.
    • Check: (1,3)R(1,3) \in R and (3,1)R(3,1) \in R; (1,4)R(1,4) \in R and (4,1)R(4,1) \in R; (3,4)R(3,4) \in R and (4,3)R(4,3) \in R; (1,1)(1,1) and (2,2)(2,2) are symmetric.
    • Symmetric holds, but reflexivity fails.
  • Transitive? Not required since not reflexive.
  • Conclusion: RR is not an equivalence relation because it is not reflexive.

Answer: No, not equivalence relation (fails reflexivity).


c. Let f(x)=2x3f(x) = 2x - 3 and g(x)=x+1g(x) = x + 1. Find (gf)1(x)(g \circ f)^{-1}(x). [3]

Solution:

  • Compute gfg \circ f: gf(x)=g(f(x))=g(2x3)=(2x3)+1=2x2.g \circ f(x) = g(f(x)) = g(2x - 3) = (2x - 3) + 1 = 2x - 2.
  • Let h(x)=2x2h(x) = 2x - 2. Find h1(x)h^{-1}(x): y=2x2,y+2=2x,x=y+22.\begin{align*} y &= 2x - 2, \\ y + 2 &= 2x, \\ x &= \frac{y + 2}{2}. \end{align*} So h1(x)=x+22h^{-1}(x) = \frac{x + 2}{2}.
  • Thus, (gf)1(x)=x+22(g \circ f)^{-1}(x) = \frac{x + 2}{2}.

Answer: x+22\frac{x + 2}{2}


d. State the domain and range of the function below.
i. f(x)=x2+2f(x) = x^2 + 2 [4]

Solution:

  • Domain: No restrictions; defined for all real xx. So domain is (,)(-\infty, \infty).
  • Range: x20x^2 \geq 0, so x2+22x^2 + 2 \geq 2. Minimum value is 2 at x=0x = 0, and as x±x \to \pm\infty, f(x)f(x) \to \infty. So range is [2,)[2, \infty).

Answer: Domain: R\mathbb{R} or (,)(-\infty, \infty); Range: [2,)[2, \infty)


ii. g(x)=x+42x1g(x) = \frac{x+4}{2x-1} [4]

Solution:

  • Domain: Denominator 2x102x - 1 \neq 0, so x12x \neq \frac{1}{2}. Domain is (,12)(12,)\left( -\infty, \frac{1}{2} \right) \cup \left( \frac{1}{2}, \infty \right).
  • Range: Solve for xx in terms of yy: y=x+42x− 1,y(2x1)=x+4,

2xyy=x+4,

2xyx=y+4,

x(2y1)=y+4,x=y+42y1.\begin{align*} y &= \frac{x+4}{2x-1}, \\ y(2x - 1) &= x + 4, \\ 2xy - y &= x + 4, \\ 2xy - x &= y + 4, \\ x(2y - 1) &= y + 4, \\ x &= \frac{y + 4}{2y - 1}. \end{align*} This is defined when 2y102y - 1 \neq 0, i.e., y12y \neq \frac{1}{2}. For all other yy, there is a corresponding xx,

so range is all reals except 12\frac{1}{2}: (,12)(12,)\left( -\infty, \frac{1}{2} \right) \cup \left( \frac{1}{2}, \infty \right).

Answer: Domain: (,12)(12,)\left( -\infty, \frac{1}{2} \right) \cup \left( \frac{1}{2}, \infty \right); Range: (,12)(12,)\left( -\infty, \frac{1}{2} \right) \cup \left( \frac{1}{2}, \infty \right)

@Dr. Microbiota


END OF SOLUTIONS