INTRODUCTION TO MATHEMATICAL METHODS QUIZ TWO JAN INTAKE 2024

DATE : 10th APRIL, 2024



QUESTION ONE

a) The functions ff and gg have equations:
f(x)=x,xRf(x) = |x|, \quad x \in \mathbb{R}
g(x)=2x+1g(x) = |2x + 1|

(ii) Sketch in the same diagram the graph of f(x)f(x) and the graph of g(x)g(x). The sketch must include the coordinates of any points where the graphs meet the coordinate axes. [4]

Answers:

  • Graph of f(x)=xf(x) = |x|:

    • V-shaped graph with vertex at (0,0)(0, 0).
    • Passes through points (2,2)(-2, 2), (1,1)(-1, 1), (1,1)(1, 1), (2,2)(2, 2).
    • Intercepts: Meets both axes at (0,0)(0, 0).
  • Graph of g(x)=2x+1g(x) = |2x + 1|:

    • V-shaped graph with vertex at (12,0)\left(-\frac{1}{2}, 0\right).
    • Passes through points (1,1)(-1, 1), (0,1)(0, 1), (12,0)\left(-\frac{1}{2}, 0\right).
    • Intercepts:
      • Meets xx-axis at (12,0)\left(-\frac{1}{2}, 0\right).
      • Meets yy-axis at (0,1)(0, 1).

Sketch Description (for standard graph paper):

  1. Draw coordinate axes with xx from 3-3 to 33 and yy from 00 to 66.
  2. Plot f(x)=xf(x) = |x|:
    • Line from (3,3)(-3, 3) to (0,0)(0, 0) (slope 1-1).
    • Line from (0,0)(0, 0) to (3,3)(3, 3) (slope 11).
  3. Plot g(x)=2x+1g(x) = |2x + 1|:
    • Line from (3,5)(-3, 5) to (12,0)\left(-\frac{1}{2}, 0\right) (slope 22).
    • Line from (12,0)\left(-\frac{1}{2}, 0\right) to (3,7)(3, 7) (slope 22).
  4. Label intercepts:
    • f(x)f(x): (0,0)(0, 0).
    • g(x)g(x): (12,0)\left(-\frac{1}{2}, 0\right) and (0,1)(0, 1).

(iii) Find the xx-coordinates of the points of intersection between the two graphs. [3]

Answer:
x=1,x=13x = -1, \quad x = -\frac{1}{3}

Explanation (Step-by-Step):
To find intersection points, solve x=2x+1|x| = |2x + 1|.

  • Critical points (where expressions inside absolute values change sign):
    • For x|x|: x=0x = 0.
    • For 2x+1|2x + 1|: 2x+1=0    x=122x + 1 = 0 \implies x = -\frac{1}{2}.
  • Divide real line into intervals based on critical points: (,12)(-\infty, -\frac{1}{2}), [12,0)[-\frac{1}{2}, 0), [0,)[0, \infty).

Case 1: x<12x < -\frac{1}{2}

  • Here, x<0x < 0 and 2x+1<02x + 1 < 0, so:
    x=x,2x+1=(2x+1)|x| = -x, \quad |2x + 1| = -(2x + 1)
    Equation: x=(2x+1)-x = -(2x + 1)
    x=2x1    x=1-x = -2x - 1 \implies x = -1
  • Check: x=1<12x = -1 < -\frac{1}{2} (valid).

Case 2: 12x<0-\frac{1}{2} \leq x < 0

  • Here, x<0x < 0 and 2x+102x + 1 \geq 0, so:
    x=x,2x+1=2x+1|x| = -x, \quad |2x + 1| = 2x + 1
    Equation: x=2x+1-x = 2x + 1
    x2x=1    3x=1    x=13-x - 2x = 1 \implies -3x = 1 \implies x = -\frac{1}{3}
  • Check: 1213<0-\frac{1}{2} \leq -\frac{1}{3} < 0 (valid).

Case 3: x0x \geq 0

  • Here, x0x \geq 0 and 2x+1>02x + 1 > 0, so:
    x=x,2x+1=2x+1|x| = x, \quad |2x + 1| = 2x + 1
    Equation: x=2x+1x = 2x + 1
    x2x=1    x=1    x=1x - 2x = 1 \implies -x = 1 \implies x = -1
  • Check: x=1≱0x = -1 \not\geq 0 (invalid).

Conclusion: Intersections at x=1x = -1 and x=13x = -\frac{1}{3}.


b) Solve the equation 4x1=3x27|-4x - 1| = -|3x - 27| [3]

Answer:
No solution.

Explanation (Step-by-Step):

  • Left side: 4x10|-4x - 1| \geq 0 (absolute value is always non-negative).
  • Right side: 3x270-|3x - 27| \leq 0 (negative of absolute value is always non-positive).
  • Equality holds only if both sides are zero:
    4x1=0and3x27=0|-4x - 1| = 0 \quad \text{and} \quad -|3x - 27| = 0
    • Solve 4x1=0|-4x - 1| = 0:
      4x1=0    x=14-4x - 1 = 0 \implies x = -\frac{1}{4}
    • Solve 3x27=0-|3x - 27| = 0:
      3x27=0    3x27=0    x=9|3x - 27| = 0 \implies 3x - 27 = 0 \implies x = 9
  • Contradiction: x=14x = -\frac{1}{4} and x=9x = 9 cannot both be true.
  • Conclusion: No xx satisfies the equation.

QUESTION TWO

a) The function f(x)=x22x+6f(x) = x^2 - 2x + 6

(i) Complete the square. [3]

Answer:
f(x)=(x1)2+5f(x) = (x - 1)^2 + 5

Explanation (Step-by-Step):

  • Formula: For ax2+bx+cax^2 + bx + c, rewrite as a(x+b2a)2+(cb24a)a\left(x + \frac{b}{2a}\right)^2 + \left(c - \frac{b^2}{4a}\right).
  • Here, a=1a = 1, b=2b = -2, c=6c = 6:
    f(x)=x22x+6f(x) = x^2 - 2x + 6
    f(x)=(x22x+(22)2)+6(22)2f(x) = \left(x^2 - 2x + \left(\frac{-2}{2}\right)^2\right) + 6 - \left(\frac{-2}{2}\right)^2
    f(x)=(x22x+1)+61f(x) = (x^2 - 2x + 1) + 6 - 1
    f(x)=(x1)2+5f(x) = (x - 1)^2 + 5

(ii) Hence sketch the graph of the function, showing clearly the intercepts, turning point, and line of symmetry. [4]

Answer:

  • Turning point (vertex): (1,5)(1, 5) (from (x1)2+5(x - 1)^2 + 5).
  • Line of symmetry: x=1x = 1.
  • yy-intercept: At x=0x = 0:
    f(0)=022(0)+6=6    (0,6)f(0) = 0^2 - 2(0) + 6 = 6 \implies (0, 6)
  • xx-intercepts: Set f(x)=0f(x) = 0:
    (x1)2+5=0    (x1)2=5(x - 1)^2 + 5 = 0 \implies (x - 1)^2 = -5
    No real solutions (since square is non-negative), so no xx-intercepts.

Sketch Description (for standard graph paper):

  1. Draw coordinate axes with xx from 2-2 to 44 and yy from 00 to 1010.
  2. Plot vertex: (1,5)(1, 5).
  3. Plot yy-intercept: (0,6)(0, 6).
  4. Symmetry: Line x=1x = 1 (vertical line through vertex).
  5. Additional points:
    • x=2x = 2: f(2)=(2)22(2)+6=6    (2,6)f(2) = (2)^2 - 2(2) + 6 = 6 \implies (2, 6).
    • x=3x = 3: f(3)=96+6=9    (3,9)f(3) = 9 - 6 + 6 = 9 \implies (3, 9).
    • Symmetric point to (0,6)(0, 6): (2,6)(2, 6) (since line of symmetry is x=1x=1).
  6. Shape: Parabola opening upwards (minimum at vertex).


b) The roots of the quadratic equation 2x2+4x3=02x^2 + 4x - 3 = 0 are α\alpha and β\beta. Without solving the equation, find the exact values of α3+β3\alpha^3 + \beta^3. [3]

Answer:
α3+β3=17\alpha^3 + \beta^3 = -17

Explanation (Step-by-Step):

  • Quadratic relations: For ax2+bx+c=0ax^2 + bx + c = 0,
    α+β=ba,αβ=ca\alpha + \beta = -\frac{b}{a}, \quad \alpha\beta = \frac{c}{a}
    Here, a=2a = 2, b=4b = 4, c=3c = -3:
    α+β=42=2\alpha + \beta = -\frac{4}{2} = -2
    αβ=32=32\alpha\beta = \frac{-3}{2} = -\frac{3}{2}

  • Identity for α3+β3\alpha^3 + \beta^3:
    α3+β3=(α+β)(α2αβ+β2)\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2)
    α2+β2=(α+β)22αβ\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta

  • Compute α2+β2\alpha^2 + \beta^2:
    α2+β2=(2)22(32)=4+3=7\alpha^2 + \beta^2 = (-2)^2 - 2\left(-\frac{3}{2}\right) = 4 + 3 = 7

  • Compute α2αβ+β2\alpha^2 - \alpha\beta + \beta^2:
    α2αβ+β2=(α2+β2)αβ=7(32)=7+32=172\alpha^2 - \alpha\beta + \beta^2 = (\alpha^2 + \beta^2) - \alpha\beta = 7 - \left(-\frac{3}{2}\right) = 7 + \frac{3}{2} = \frac{17}{2}

  • Compute α3+β3\alpha^3 + \beta^3:
    α3+β3=(2)×172=17\alpha^3 + \beta^3 = (-2) \times \frac{17}{2} = -17

Conclusion: α3+β3=17\alpha^3 + \beta^3 = -17.


OTHER WAYS TO SOLVE THESE 

QUESTION ONE

a) Functions f(x)=xf(x) = |x| and g(x)=2x+1g(x) = |2x + 1|
(ii) Sketch the graphs of f(x)f(x) and g(x)g(x) in the same diagram, including intercepts with axes.

  • Graph of f(x)=xf(x) = |x|:

    • V-shaped graph with vertex at (0, 0).
    • Intercepts:
      • X-intercept and y-intercept: (0, 0).
    • Passes through points: (-2, 2), (-1, 1), (1, 1), (2, 2).
    • For x<0x < 0, f(x)=xf(x) = -x (slope = -1).
    • For x0x \geq 0, f(x)=xf(x) = x (slope = 1).
  • Graph of g(x)=2x+1g(x) = |2x + 1|:

    • V-shaped graph with vertex at (-0.5, 0).
    • Intercepts:
      • X-intercept: (-0.5, 0) (since 2(0.5)+1=0|2(-0.5) + 1| = 0).
      • Y-intercept: (0, 1) (since 2(0)+1=1|2(0) + 1| = 1).
    • Passes through points: (-1, 1), (-0.5, 0), (0, 1), (1, 3).
    • For x<0.5x < -0.5, g(x)=2x1g(x) = -2x - 1 (slope = -2).
    • For x0.5x \geq -0.5, g(x)=2x+1g(x) = 2x + 1 (slope = 2).
  • Intersection Points (from part iii): (-1, 1) and (-13\frac{1}{3}, 13\frac{1}{3}) ≈ (-0.333, 0.333).

Sketch Description:

  • Draw coordinate axes.
  • For f(x)f(x): Plot vertex (0, 0), and points (-1, 1), (1, 1). Draw lines with slopes ±1.
  • For g(x)g(x): Plot vertex (-0.5, 0), y-intercept (0, 1), and points (-1, 1), (1, 3). Draw lines with slopes ±2.
  • Label intercepts: (0, 0) for ff, (-0.5, 0) and (0, 1) for gg.
  • Label intersection points: (-1, 1) and (-13\frac{1}{3}, 13\frac{1}{3}).
  • The graphs intersect at two points, and g(x)g(x) is steeper than f(x)f(x).

(iii) Find the x-coordinates of the points of intersection.
To find where f(x)=g(x)f(x) = g(x):
x=2x+1|x| = |2x + 1|
The critical points (where expressions inside absolute values change sign) are x=0.5x = -0.5 and x=0x = 0. Divide into intervals: x<0.5x < -0.5, 0.5x<0-0.5 \leq x < 0, and x0x \geq 0.

  • Case 1: x<0.5x < -0.5
    Here, x=x|x| = -x and 2x+1=(2x+1)=2x1|2x + 1| = -(2x + 1) = -2x - 1.
    Equation:
    x=2x1-x = -2x - 1
    Solve:
    x+2x=1    x=1-x + 2x = -1 \implies x = -1
    Check: x=1<0.5x = -1 < -0.5, valid.

  • Case 2: 0.5x<0-0.5 \leq x < 0
    Here, x=x|x| = -x and 2x+1=2x+1|2x + 1| = 2x + 1.
    Equation:
    x=2x+1-x = 2x + 1
    Solve:
    x2x=1    3x=1    x=13-x - 2x = 1 \implies -3x = 1 \implies x = -\frac{1}{3}
    Check: 0.5130.333<0-0.5 \leq -\frac{1}{3} \approx -0.333 < 0, valid.

  • Case 3: x0x \geq 0
    Here, x=x|x| = x and 2x+1=2x+1|2x + 1| = 2x + 1.
    Equation:
    x=2x+1    x=1    x=1x = 2x + 1 \implies -x = 1 \implies x = -1
    Check: x=1≱0x = -1 \not\geq 0, invalid.

Solution: The x-coordinates of intersection are x=1x = -1 and x=13x = -\frac{1}{3}.

b) Solve the equation 4x1=3x27|-4x - 1| = -|3x - 27|

  • The left side, 4x1|-4x - 1|, is always non-negative (0\geq 0).
  • The right side, 3x27-|3x - 27|, is always non-positive (0\leq 0) because it is the negative of an absolute value.
  • For equality, both sides must be zero simultaneously:
    4x1=0and3x27=0|-4x - 1| = 0 \quad \text{and} \quad -|3x - 27| = 0
  • Solve 4x1=0|-4x - 1| = 0:
    4x1=0    x=14-4x - 1 = 0 \implies x = -\frac{1}{4}
  • Solve 3x27=0-|3x - 27| = 0:
    3x27=0    3x27=0    x=9|3x - 27| = 0 \implies 3x - 27 = 0 \implies x = 9
  • At x=14x = -\frac{1}{4}:
    Left side: 4(14)1=11=0|-4(-\frac{1}{4}) - 1| = |1 - 1| = 0
    Right side: 3(14)27=3427=1114=11140-|3(-\frac{1}{4}) - 27| = -|-\frac{3}{4} - 27| = -|-\frac{111}{4}| = -\frac{111}{4} \neq 0
  • At x=9x = 9:
    Left side: 4(9)1=361=370|-4(9) - 1| = |-36 - 1| = 37 \neq 0
    Right side: 3(9)27=2727=0-|3(9) - 27| = -|27 - 27| = 0
  • No xx satisfies both conditions simultaneously.

Solution: The equation has no solution. The solution set is empty.


QUESTION TWO

a) Function f(x)=x22x+6f(x) = x^2 - 2x + 6
(i) Complete the square.

  • Formula: For ax2+bx+cax^2 + bx + c, rewrite as a(x+b2a)2+constanta(x + \frac{b}{2a})^2 + \text{constant}.
  • Here, a=1a = 1, b=2b = -2, c=6c = 6.
  • Half of bb is 1-1, square is 11.
  • Add and subtract 11:
    x22x+6=(x22x+1)+61=(x1)2+5x^2 - 2x + 6 = (x^2 - 2x + 1) + 6 - 1 = (x - 1)^2 + 5
  • Completed square form: f(x)=(x1)2+5f(x) = (x - 1)^2 + 5.

(ii) Sketch the graph, showing intercepts, turning point, and line of symmetry.

  • Turning Point (Vertex): From f(x)=(x1)2+5f(x) = (x - 1)^2 + 5, vertex is at (1, 5).
  • Line of Symmetry: Vertical line through vertex, x=1x = 1.
  • Y-intercept: Set x=0x = 0:
    f(0)=(0)22(0)+6=6→ Point: (0, 6)f(0) = (0)^2 - 2(0) + 6 = 6 \quad \text{→ Point: (0, 6)}
  • X-intercepts: Set y=0y = 0:
    x22x+6=0x^2 - 2x + 6 = 0
    Discriminant: (2)24(1)(6)=424=20<0(-2)^2 - 4(1)(6) = 4 - 24 = -20 < 0 → No real roots, so no x-intercepts.
  • Behavior: Since coefficient of x2x^2 is positive, parabola opens upwards.
  • Additional Point: At x=2x = 2, f(2)=(2)22(2)+6=44+6=6f(2) = (2)^2 - 2(2) + 6 = 4 - 4 + 6 = 6 → Point (2, 6). Symmetric to (0, 6) about x=1x = 1.

Sketch Description:

  • Plot vertex (1, 5).
  • Plot y-intercept (0, 6) and symmetric point (2, 6).
  • Draw parabola opening upwards, symmetric about x=1x = 1, with minimum at (1, 5), and passing through (0, 6) and (2, 6).
  • Label: vertex (1, 5), y-intercept (0, 6), and line of symmetry x=1x = 1.

b) Roots of 2x2+4x3=02x^2 + 4x - 3 = 0 are α\alpha and β\beta. Find α3+β3\alpha^3 + \beta^3 without solving.

  • Key Formulas:
    • Sum of roots: α+β=ba\alpha + \beta = -\frac{b}{a}
    • Product of roots: αβ=ca\alpha \beta = \frac{c}{a}
    • α3+β3=(α+β)(α2αβ+β2)\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha \beta + \beta^2)
    • α2+β2=(α+β)22αβ\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta
  • Here, a=2a = 2, b=4b = 4, c=3c = -3.
  • Calculate:
    α+β=ba=42=2\alpha + \beta = -\frac{b}{a} = -\frac{4}{2} = -2
    αβ=ca=32=32\alpha \beta = \frac{c}{a} = \frac{-3}{2} = -\frac{3}{2}
  • Find α2+β2\alpha^2 + \beta^2:
    α2+β2=(α+β)22αβ=(2)22(32)=4(3)=4+3=7\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta = (-2)^2 - 2(-\frac{3}{2}) = 4 - (-3) = 4 + 3 = 7
  • Find α2αβ+β2\alpha^2 - \alpha \beta + \beta^2:
    α2αβ+β2=(α2+β2)αβ=7(32)=7+32=142+32=172\alpha^2 - \alpha \beta + \beta^2 = (\alpha^2 + \beta^2) - \alpha \beta = 7 - (-\frac{3}{2}) = 7 + \frac{3}{2} = \frac{14}{2} + \frac{3}{2} = \frac{17}{2}
  • Find α3+β3\alpha^3 + \beta^3:
    α3+β3=(α+β)(α2αβ+β2)=(2)(172)=342=17\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha \beta + \beta^2) = (-2) \left( \frac{17}{2} \right) = -\frac{34}{2} = -17

Solution: α3+β3=17\alpha^3 + \beta^3 = -17 (exact value).

@Dr. Microbiota


End of Solutions