INTRODUCTION TO MATHEMATICAL METHODS TEST TWO JAN INTAKE 2024

DATE : 14th May, 2024

INSTRUCTIONS

  1. Duration: 2 Hours.

QUESTION ONE

(a) Express the following as partial fractions
(i) x8(x2+1)(x2)\frac{x-8}{(x^2+1)(x-2)} [3]

(ii) 9(x+1)2(x2)\frac{9}{(x+1)^2(x-2)} [5]

(b) Given that f(x)=2x22x5f(x) = 2x^2 - 2x - 5 quadratic function.
(i) Complete the square of quadratic functions. [3]
(ii) Hence sketch the graph of the function, showing clearly the y – intercepts, turning point and line of symmetry. [3]

(c) Given that the roots of the equation 3x2+10x6=03x^2 + 10x - 6 = 0 are α\alpha and β\beta.
(i) Find an equation whose roots are α\alpha and β-\beta [4]
(ii) Hence determine the nature of its roots. [2]


Answer:

(a)(i)
The expression is x8(x2+1)(x2)\frac{x-8}{(x^2+1)(x-2)}.
Set up partial fractions:

x8(x2+1)(x2)=Ax+Bx2+1+Cx2\frac{x-8}{(x^2+1)(x-2)} = \frac{Ax + B}{x^2+1} + \frac{C}{x-2}

Multiply both sides by (x2+1)(x2)(x^2+1)(x-2):

x8=(Ax+B)(x2)+C(x2+1)x - 8 = (Ax + B)(x - 2) + C(x^2 + 1)

Expand and equate coefficients:

(Ax+B)(x2)=Ax22Ax+Bx2B,C(x2+1)=Cx2+C

(Ax + B)(x - 2) = Ax^2 - 2Ax + Bx - 2B, \quad C(x^2 + 1) = Cx^2 + C x8=(A+C)x2+(B2A)x+(2B+C)x - 8 = (A + C)x^2 + (B - 2A)x + (-2B + C)

Equate coefficients:

  • x2x^2: A+C=0A + C = 0
  • xx: B2A=1B - 2A = 1
  • Constant: 2B+C=8-2B + C = -8
    Solve the system:
    From A+C=0A + C = 0, C=AC = -A.
    Substitute into 2B+C=8-2B + C = -8:

2BA=8(Equation 3’)-2B - A = -8 \quad \text{(Equation 3')}

From B2A=1B - 2A = 1:

B=2A+1B = 2A + 1

Substitute into Equation 3':

2(2A+1)A=8  

  4A2A=8  

  5A=6  

  A=65-2(2A + 1) - A = -8 \implies -4A - 2 - A = -8 \implies -5A = -6 \implies A = \frac{6}{5}

Then:

C=65,B=2(65)+1

=125+55=175C = -\frac{6}{5}, \quad B = 2 \left( \frac{6}{5} \right) + 1 = \frac{12}{5} + \frac{5}{5} = \frac{17}{5}

So:

x8(x2+1)(x2)=65x+175x2+1+65x2

=6x+175(x2+1)65(x2)

\frac{x-8}{(x^2+1)(x-2)} = \frac{\frac{6}{5}x + \frac{17}{5}}{x^2+1} + \frac{-\frac{6}{5}}{x-2} = \frac{6x + 17}{5(x^2 + 1)} - \frac{6}{5(x - 2)} 6x+175(x2+1)65(x2)\boxed{\dfrac{6x + 17}{5(x^{2} + 1)} - \dfrac{6}{5(x - 2)}}


(a)(ii)
The expression is 9(x+1)2(x2)\frac{9}{(x+1)^2(x-2)}.
Set up partial fractions:

9(x+1)2(x2)=Ax+1+B(x+1)2+Cx2\frac{9}{(x+1)^2(x-2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-2}

Multiply both sides by (x+1)2(x2)(x+1)^2(x-2):

9=A(x+1)(x2)+B(x2)+C(x+1)29 = A(x+1)(x-2) + B(x-2) + C(x+1)^2

Expand and equate coefficients:

A(x+1)(x2)=A(x2x2)=Ax2Ax2A

A(x+1)(x-2) = A(x^2 - x - 2) = Ax^2 - Ax - 2A B(x2)=Bx2B,

C(x+1)2=C(x2+2x+1)

                =Cx2+2Cx+C

B(x-2) = Bx - 2B, \quad C(x+1)^2 = C(x^2 + 2x + 1) = Cx^2 + 2Cx + C 9=(A+C)x2+(A+B+2C)x+(2A2B+C)9 = (A + C)x^2 + (-A + B + 2C)x + (-2A - 2B + C)

Equate coefficients:

  • x2x^2: A+C=0A + C = 0
  • xx: A+B+2C=0-A + B + 2C = 0
  • Constant: 2A2B+C=9-2A - 2B + C = 9
    Solve the system:
    From A+C=0A + C = 0, C=AC = -A.
    Substitute into A+B+2C=0-A + B + 2C = 0:

A+B2A=0    B=3A-A + B - 2A = 0 \implies B = 3A

Substitute into 2A2B+C=9-2A - 2B + C = 9:

2A2(3A)A=9  

  2A6AA=9  

  9A=9  

  A=1-2A - 2(3A) - A = 9 \implies -2A - 6A - A = 9 \implies -9A = 9 \implies A = -1

Then:

B=3(1)=3,C=(1)=1B = 3(-1) = -3, \quad C = -(-1) = 1

So:

9(x+1)2(x2)=1x+1+3(x+1)2+1x2

                                 =1x+13(x+1)2+1x2

\frac{9}{(x+1)^2(x-2)} = \frac{-1}{x+1} + \frac{-3}{(x+1)^2} + \frac{1}{x-2} = -\frac{1}{x+1} - \frac{3}{(x+1)^2} + \frac{1}{x-2} 1x21x+13(x+1)2\boxed{\dfrac{1}{x-2} - \dfrac{1}{x+1} - \dfrac{3}{(x+1)^2}}


(b)(i)
Given f(x)=2x22x5f(x) = 2x^2 - 2x - 5.
Complete the square:

f(x)=2(x2x)5

=2(x2x+1414)5

=2((x12)214)5

f(x) = 2(x^2 - x) - 5 = 2\left(x^2 - x + \frac{1}{4} - \frac{1}{4}\right) - 5 = 2\left(\left(x - \frac{1}{2}\right)^2 - \frac{1}{4}\right) - 5 =2(x12)2245

=2(x12)2125

=2(x12)2112

= 2\left(x - \frac{1}{2}\right)^2 - \frac{2}{4} - 5 = 2\left(x - \frac{1}{2}\right)^2 - \frac{1}{2} - 5 = 2\left(x - \frac{1}{2}\right)^2 - \frac{11}{2} f(x)=2(x12)2112\boxed{f(x) = 2\left(x - \dfrac{1}{2}\right)^2 - \dfrac{11}{2}}

(b)(ii)
Sketch the graph of f(x)=2x22x5f(x) = 2x^2 - 2x - 5:

  • y-intercept: When x=0x = 0, f(0)=5f(0) = -5, so (0,5)(0, -5).
  • Turning point: From completed square, vertex at (12,112)=(0.5,5.5)\left( \frac{1}{2}, -\frac{11}{2} \right) = (0.5, -5.5).
  • Line of symmetry: x=12=0.5x = \frac{1}{2} = 0.5.
  • Shape: Parabola opens upwards (coefficient of x2x^2 is positive).
  • x-intercepts (optional): Solve 2x22x5=02x^2 - 2x - 5 = 0: x=2±(2)24(2)(5)4
  • =2±444
  • =2±2114
  • =1±112x = \frac{2 \pm \sqrt{(-2)^2 - 4(2)(-5)}}{4} = \frac{2 \pm \sqrt{44}}{4} = \frac{2 \pm 2\sqrt{11}}{4} = \frac{1 \pm \sqrt{11}}{2} Approximately x1.158,x2.158x \approx -1.158, \, x \approx 2.158.

Sketch:

  • Graph passes through (0,5)(0, -5), vertex at (0.5,5.5)(0.5, -5.5), symmetric about x=0.5x = 0.5.
  • Opens upwards, x-intercepts at (1112,0)\left( \frac{1 - \sqrt{11}}{2}, 0 \right) and (1+112,0)\left( \frac{1 + \sqrt{11}}{2}, 0 \right).

(c)(i)
Given roots α,β\alpha, \beta of 3x2+10x6=03x^2 + 10x - 6 = 0.
Sum: α+β=ba

                    =103\alpha + \beta = -\frac{b}{a} = -\frac{10}{3}.


Product: αβ=ca

                     =63

                      =2\alpha \beta = \frac{c}{a} = \frac{-6}{3} = -2.


New roots: α\alpha and β-\beta.
Sum: α+(β)=αβ\alpha + (-\beta) = \alpha - \beta.


Product: α(β)=αβ=(2)=2\alpha \cdot (-\beta) = -\alpha \beta = -(-2) = 2.


The equation is x2(sum)x+product=0x^2 - (\text{sum})x + \text{product} = 0, so:

x2(αβ)x+2=0

x^2 - (\alpha - \beta)x + 2 = 0 x2(αβ)x+2=0\boxed{x^{2} - (\alpha - \beta)x + 2 = 0}


(c)(ii)
Discriminant of the new equation:

(αβ)24(1)(2)

=(αβ)28(\alpha - \beta)^2 - 4(1)(2) = (\alpha - \beta)^2 - 8

Compute (αβ)2(\alpha - \beta)^2:

(αβ)2=(α+β)24αβ

=(103)24(2)

=1009+8

=1009+729

=1729(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta = \left(-\frac{10}{3}\right)^2 - 4(-2) = \frac{100}{9} + 8 = \frac{100}{9} + \frac{72}{9} = \frac{172}{9}

So discriminant:

17298 >0

=1729729>0

=1009>0\frac{172}{9} - 8 = \frac{172}{9} - \frac{72}{9} = \frac{100}{9} > 0

Since discriminant positive, roots are real and distinct.

real and distinct\boxed{\text{real and distinct}}


QUESTION TWO

(a) State the following
(i) The factor theorem [2]
(ii) The polynomial of degree 4 and give your own example [2]

(b) Given that f(x)=x46x33x2+16x+12f(x) = x^4 - 6x^3 - 3x^2 + 16x + 12 is a polynomial of degree four.

(Note: Corrected from "degree three" as per the polynomial given.)

(i) Factorise completely for which f(x)f(x). [5]
(ii) Find all solutions for which f(x)=0f(x) = 0. [3]
(iii) Sketch the graph of f(x)f(x). [4]

(c) Find the quotient and remainder of the polynomial  f(x)=6x35x23x+2      

when it is divide by x+2x + 2 by using synthetic division. [4]


Answer:

(a)(i)
The factor theorem states that for a polynomial f(x)f(x), if f(c)=0f(c) = 0, then (xc)(x - c) is a factor of f(x)f(x),

and conversely, if (xc)(x - c) is a factor, then f(c)=0f(c) = 0.

If f(c)=0 for a polynomial f(x), then (xc) is a factor of f(x), and vice versa.\boxed{\text{If } f(c) = 0 \text{ for a polynomial } f(x), \text{ then } (x - c) \text{ is a factor of } f(x), \text{ and vice versa.}}

(a)(ii)
A polynomial of degree 4 is a polynomial where the highest power of xx is 4.
Example: x4+2x3x2+5x6x^4 + 2x^3 - x^2 + 5x - 6.

A polynomial of degree 4 has the highest exponent 4.

Example: x4+2x3x2+5x6\boxed{\text{A polynomial of degree 4 has the highest exponent 4. Example: } x^{4} + 2x^{3} - x^{2} + 5x - 6}

(b)(i)
Given f(x)=x46x33x2+16x+12f(x) = x^4 - 6x^3 - 3x^2 + 16x + 12.
Find rational roots using possible factors of constant term (12) over leading coefficient (1): ±1,2,3,4,6,12\pm 1, 2, 3, 4, 6, 12.

  • Test x=1x = -1: f(1)=(1)46(1)33(1)2+16(1)+12

                                               =1+6316+12=0f(-1) = (-1)^4 - 6(-1)^3 - 3(-1)^2 + 16(-1) + 12 = 1 + 6 - 3 - 16 + 12 = 0, so (x+1)(x + 1) is a factor.

Synthetic division with root 1-1:

1631612117412174120\begin{array}{r|rrrrr} & 1 & -6 & -3 & 16 & 12 \\ -1 & & -1 & 7 & -4 & -12 \\ \hline & 1 & -7 & 4 & 12 & 0 \\ \end{array}

Quotient: x37x2+4x+12x^3 - 7x^2 + 4x + 12.
Now factor x37x2+4x+12x^3 - 7x^2 + 4x + 12.

  • Test x=2x = 2: f(2)=828+8+12=0f(2) = 8 - 28 + 8 + 12 = 0, so (x2)(x - 2) is a factor.
    Synthetic division with root 22:

174122210121560\begin{array}{r|rrrr} & 1 & -7 & 4 & 12 \\ 2 & & 2 & -10 & -12 \\ \hline & 1 & -5 & -6 & 0 \\ \end{array}

Quotient: x25x6x^2 - 5x - 6.
Factor: x25x6=(x6)(x+1)x^2 - 5x - 6 = (x - 6)(x + 1).
So:

f(x)=(x+1)(x2)(x6)(x+1)

=(x+1)2(x2)(x6)

f(x) = (x + 1)(x - 2)(x - 6)(x + 1) = (x + 1)^2 (x - 2)(x - 6) f(x)=(x+1)2(x2)(x6)\boxed{f(x) = (x + 1)^{2} (x - 2)(x - 6)}


(b)(ii)
Solve f(x)=0f(x) = 0:

(x+1)2(x2)(x6)=0(x + 1)^2 (x - 2)(x - 6) = 0

So:

x=1(double root),x=2,x=6x = -1 \quad (\text{double root}), \quad x = 2, \quad x = 6

Solutions: x=1,2,6x = -1, 2, 6.

x=1,x=2,x=6\boxed{x = -1, \quad x = 2, \quad x = 6}

(b)(iii)
Sketch the graph of f(x)=x46x33x2+16x+12f(x) = x^4 - 6x^3 - 3x^2 + 16x + 12:

  • Degree 4, positive leading coefficient: as x±x \to \pm \infty, yy \to \infty.
  • Roots: x=1x = -1 (multiplicity 2, touches x-axis), x=2x = 2, x=6x = 6 (cross x-axis).
  • y-intercept: f(0)=12f(0) = 12, so (0,12)(0, 12).
  • Behavior:
    • As xx \to -\infty, yy \to \infty.
    • Decreases to local minimum at x1x \approx -1 (since multiplicity 2, touches at (1,0)(-1, 0)).
    • Increases to local maximum at x1x \approx 1 (since f(1)=163+16+12=20>0f(1) = 1 - 6 - 3 + 16 + 12 = 20 > 0).
    • Decreases to (2,0)(2, 0), crosses.
    • Continues decreasing to local minimum in (2,6)(2, 6) (since f(3)=8116227+48+12=48<0f(3) = 81 - 162 - 27 + 48 + 12 = -48 < 0).
    • Increases to (6,0)(6, 0), crosses.
    • Increases to \infty.
  • Key points: (1,0)(-1, 0), (0,12)(0, 12), (1,20)(1, 20), (2,0)(2, 0), (3,48)(3, -48), (6,0)(6, 0).

Sketch description:

  • Graph touches x-axis at (1,0)(-1, 0), crosses at (2,0)(2, 0) and (6,0)(6, 0).
  • Local minimum at x=1x = -1, local maximum near x=1x = 1, local minimum in (2,6)(2, 6).
  • y-intercept at (0,12)(0, 12).

(c)
Divide f(x)=6x35x23x+2f(x) = 6x^3 - 5x^2 - 3x + 2 by x+2x + 2 (root 2-2) using synthetic division:

653221234626173160\begin{array}{r|rrrr} & 6 & -5 & -3 & 2 \\ -2 & & -12 & 34 & -62 \\ \hline & 6 & -17 & 31 & -60 \\ \end{array}

Quotient: 6x217x+316x^2 - 17x + 31, Remainder: 60-60.

Quotient: 6x217x+31,Remainder: 60

🧮 Synthetic Division of

f(x)=6x35x23x+2f(x) = 6x^3 - 5x^2 - 3x + 2
by x+2x + 2 (which means using −2 in synthetic division):

Setup:

-2 |   6   -5   -3    2
    |       -12  34  -62
    ---------------------
      6  -17   31  -60

✅ Final Result:

  • Quotient: 6x217x+316x^2 - 17x + 31
  • Remainder: 60-60

So,

6x35x23x+2x+2=6x217x+3160x+2

\boxed{\text{Quotient: } 6x^{2} - 17x + 31, \quad \text{Remainder: } -60}


QUESTION THREE

(a) Sketch the following logarithmic and exponential graphs on the same diagram.
f(x)=3x+3andg(x)=log3(x3)

f(x) = 3^x + 3 \quad \text{and} \quad g(x) = \log_3 (x - 3)

(b) Solve the following without using calculator or log table.
(i) log2(5x+1)=2log4(2x+8)\log_2 (5x + 1) = 2\log_4 (2x + 8)
(ii) 2cos2x+sinx1=02\cos^2 x + \sin x - 1 = 0

(c) Prove the following trigonometric identities
tan2x=tanx1tan2x\tan 2x = \frac{\tan x}{1-\tan^2 x}
(Note: The identity as stated is incorrect; it should be tan2x=2tanx1tan2x\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}. Proof for the correct identity is provided.)

(d) Find the value of the following trigonometric ratios without using a calculator cot(300)\cot(-300^\circ)

(e) Sketch the following function by determining the phase shift, vertical shift, period and amplitude. Sketch within the range given to the right of each function
f(x)=2+cscxf(x) = 2 + \csc x
[2π,2π][-2\pi, 2\pi]

THE END


Answer:

(a)
Sketch f(x)=3x+3f(x) = 3^x + 3 and g(x)=log3(x3)g(x) = \log_3 (x - 3) on the same diagram:

  • Exponential function y=3x+3y = 3^x + 3:
    • As xx \to -\infty, y3+y \to 3^+ (horizontal asymptote y=3y = 3).
    • Passes through (0,4)(0, 4), (1,1033.333)(-1, \frac{10}{3} \approx 3.333), (1,6)(1, 6).
    • Increases for all xx.
  • Logarithmic function y=log3(x3)y = \log_3 (x - 3):
    • Domain: x>3x > 3.
    • As x3+x \to 3^+, yy \to -\infty.
    • Passes through (4,0)(4, 0), (12,2)(12, 2).
    • Increases for x>3x > 3.
  • Intersection: Not required, but may intersect.
  • Sketch:
    • y=3x+3y = 3^x + 3: Starts near y=3y = 3 for large negative xx, increases through (0,4)(0, 4), (1,6)(1, 6).
    • y=log3(x3)y = \log_3 (x - 3): Vertical asymptote at x=3x = 3, increases through (4,0)(4, 0), (12,2)(12, 2).

(b)(i)
Solve log2(5x+1)=2log4(2x+8)\log_2 (5x + 1) = 2 \log_4 (2x + 8):
First, simplify right side. Note log4a=log2alog24=log2a2\log_4 a = \frac{\log_2 a}{\log_2 4} = \frac{\log_2 a}{2}, so:

2log4(2x+8)=2 xlog2(2x+8)2

              =log2(2x+8)2 \log_4 (2x + 8) = 2 \cdot \frac{\log_2 (2x + 8)}{2} = \log_2 (2x + 8)

Equation is:

log2(5x+1)=log2(2x+8)\log_2 (5x + 1) = \log_2 (2x + 8)

Arguments equal:

5x+1=2x+8  

  3x=7  

  x=735x + 1 = 2x + 8 \implies 3x = 7 \implies x = \frac{7}{3}

Check domain: 5x+1>0    x>155x + 1 > 0 \implies x > -\frac{1}{5}, 2x+8>0    x>42x + 8 > 0 \implies x > -4, both satisfied.
Verify:
Left: log2(573+1)=log2(383)\log_2 \left(5 \cdot \frac{7}{3} + 1\right) = \log_2 \left(\frac{38}{3}\right)
Right: log2(273+8)=log2(383)\log_2 \left(2 \cdot \frac{7}{3} + 8\right) = \log_2 \left(\frac{38}{3}\right), equal.

answer:  x=73\boxed{x = \dfrac{7}{3}}

(b)(ii)
Solve 2cos2x+sinx1=02 \cos^2 x + \sin x - 1 = 0:
Use identity cos2x=1sin2x\cos^2 x = 1 - \sin^2 x:

2(1sin2x)+sinx1=0  

  22sin2x+sinx1=0  

  2sin2x+sinx+1=02(1 - \sin^2 x) + \sin x - 1 = 0 \implies 2 - 2\sin^2 x + \sin x - 1 = 0 \implies -2\sin^2 x + \sin x + 1 = 0

Multiply by 1-1:

2sin2xsinx1=02\sin^2 x - \sin x - 1 = 0

Let u=sinxu = \sin x:

2u2u1=02u^2 - u - 1 = 0

Discriminant d=1+8=9d = 1 + 8 = 9, so:

u=1±34    u=1oru=12u = \frac{1 \pm 3}{4} \implies u = 1 \quad \text{or} \quad u = -\frac{1}{2}

So sinx=1\sin x = 1 or sinx=12\sin x = -\frac{1}{2}:

  • sinx=1\sin x = 1: x=π2+2kπx = \frac{\pi}{2} + 2k\pi, kZk \in \mathbb{Z}.
  • sinx=12\sin x = -\frac{1}{2}: x=7π6+2kπx = \frac{7\pi}{6} + 2k\pi or x=11π6+2kπx = \frac{11\pi}{6} + 2k\pi, kZk \in \mathbb{Z}.
    Solutions:

x=π2+2kπ,x=7π6+2kπ,x=11π6+2kπ,kZ\boxed{x = \dfrac{\pi}{2} + 2k\pi, \quad x = \dfrac{7\pi}{6} + 2k\pi, \quad x = \dfrac{11\pi}{6} + 2k\pi, \quad k \in \mathbb{Z}}


(c)
Prove the identity. Note: The given identity tan2x=tanx1tan2x\tan 2x = \frac{\tan x}{1 - \tan^2 x} is incorrect.

The correct identity is tan2x=2tanx1tan2x\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}. Proof for the correct identity:

tan2x=sin2xcos2x

=2sinxcosxcos2xsin2x\tan 2x = \frac{\sin 2x}{\cos 2x} = \frac{2 \sin x \cos x}{\cos^2 x - \sin^2 x}

Divide numerator and denominator by cos2x\cos^2 x:

2sinxcosxcos2xcos2xsin2xcos2x=2tanx1tan2x\frac{\frac{2 \sin x \cos x}{\cos^2 x}}{\frac{\cos^2 x - \sin^2 x}{\cos^2 x}} = \frac{2 \tan x}{1 - \tan^2 x}

So:

tan2x=2tanx1tan2x

OR YOU CAN USE THIS WAY

\boxed{\tan 2x = \dfrac{2 \tan x}{1 - \tan^{2} x}}

The correct identity is:

tan(2x)=2tan(x)1tan2(x)\tan(2x) = \frac{2 \tan(x)}{1 - \tan^2(x)}

Let’s go step-by-step to prove this identity using known trigonometric formulas.


✅ Step-by-Step Proof:

We start with the double angle identity for tangent:

tan(2x)=2tan(x)1tan2(x)\tan(2x) = \frac{2 \tan(x)}{1 - \tan^2(x)}

We’ll derive this from the angle addition formula:

tan(A+B)=tanA+tanB1tanAtanB\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}

Let A=xA = x and B=xB = x, so:

tan(2x)=tan(x+x)=tanx+tanx1tanxtanx\tan(2x) = \tan(x + x) = \frac{\tan x + \tan x}{1 - \tan x \cdot \tan x}

Simplify numerator and denominator:

  • Numerator: tanx+tanx=2tanx\tan x + \tan x = 2 \tan x
  • Denominator: 1tan2x1 - \tan^2 x

So we get:

tan(2x)=2tanx1tan2x

🎉 Final Result:

tan(2x)=2tanx1tan2x\boxed{\tan(2x) = \frac{2 \tan x}{1 - \tan^2 x}}

This identity is especially useful in simplifying expressions and solving trigonometric equations involving double angles.

\tan(2x) = \frac{2 \tan x}{1 - \tan^2 x}


(d)
Find cot(300)\cot(-300^\circ):
cot\cot is odd: cot(θ)=cotθ\cot(-\theta) = -\cot \theta, and periodic with 180180^\circ: cot(θ+180k)=cotθ\cot(\theta + 180^\circ k) = \cot \theta for integer kk.

cot(300)=cot(300+360)=cot(60)

=1tan60=13=33

\cot(-300^\circ) = \cot(-300^\circ + 360^\circ) = \cot(60^\circ) = \frac{1}{\tan 60^\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} 33

OR YOU CAN USE THIS WAY\boxed{\dfrac{\sqrt{3}}{3}}

✅ Step 1: Use Cotangent Identity

Recall that:

cot(θ)=1tan(θ)\cot(\theta) = \frac{1}{\tan(\theta)}

So we need to find:

cot(300)=1tan(300)\cot(-300^\circ) = \frac{1}{\tan(-300^\circ)}


✅ Step 2: Use Periodicity and Reference Angle

Tangent and cotangent are odd functions, meaning:

tan(θ)=tan(θ),cot(θ)=cot(θ)\tan(-\theta) = -\tan(\theta), \quad \cot(-\theta) = -\cot(\theta)

So:

cot(300)=cot(300)\cot(-300^\circ) = -\cot(300^\circ)

Now let’s simplify cot(300)\cot(300^\circ).


✅ Step 3: Find Reference Angle

  • 300300^\circ lies in the fourth quadrant
  • Reference angle: 360300=60360^\circ - 300^\circ = 60^\circ

In the fourth quadrant, cotangent is negative, so:

cot(300)=cot(60)\cot(300^\circ) = -\cot(60^\circ)

Thus:

cot(300)=(cot(60))=cot(60)\cot(-300^\circ) = -(-\cot(60^\circ)) = \cot(60^\circ)


✅ Step 4: Use Known Trig Value

From standard trigonometric ratios:

cot(60)=1tan(60)=13

\cot(60^\circ) = \frac{1}{\tan(60^\circ)} = \frac{1}{\sqrt{

🎉 Final Answer:

cot(300)=13



(e)
Sketch f(x)=2+cscxf(x) = 2 + \csc x in [2π,2π][-2\pi, 2\pi]:

  • cscx=1sinx\csc x = \frac{1}{\sin x}, period 2π2\pi.
  • Vertical asymptotes: Where sinx=0\sin x = 0, i.e., x=2π,π,0,π,2πx = -2\pi, -\pi, 0, \pi, 2\pi.
  • Vertical shift: +2, so horizontal reference line y=2y = 2.
  • Amplitude: None (cosecant has no amplitude).
  • Phase shift: None.
  • Key points:
    • Where sinx=1\sin x = 1, cscx=1\csc x = 1, f(x)=3f(x) = 3: at x=3π2,π2x = -\frac{3\pi}{2}, \frac{\pi}{2}.
    • Where sinx=1\sin x = -1, cscx=1\csc x = -1, f(x)=1f(x) = 1: at x=π2,3π2x = -\frac{\pi}{2}, \frac{3\pi}{2}.
  • USUBehavior:
    • [2π,π)[-2\pi, -\pi): As x2π+x \to -2\pi^+, ff \to \infty; decreases to local max at x=3π2x = -\frac{3\pi}{2}, f=3f = 3; decreases to -\infty as xπx \to -\pi^-.
    • (π,0)(-\pi, 0): As xπ+x \to -\pi^+, ff \to -\infty; increases to local max at x=π2x = -\frac{\pi}{2}, f=1f = 1; decreases to -\infty as x0x \to 0^-.
    • (0,π)(0, \pi): As x0+x \to 0^+, ff \to \infty; decreases to local min at x=π2x = \frac{\pi}{2}, f=3f = 3; increases to \infty as xπx \to \pi^-.
    • (π,2π)(\pi, 2\pi): As xπ+x \to \pi^+, ff \to -\infty; increases to local max at x=3π2x = \frac{3\pi}{2}, f=1f = 1; decreases to -\infty as x2πx \to 2\pi^-.
  • Local extrema:
    • Max: (3π2,3)\left(-\frac{3\pi}{2}, 3\right), (π2,1)\left(-\frac{\pi}{2}, 1\right), (3π2,1)\left(\frac{3\pi}{2}, 1\right).
    • Min: (π2,3)\left(\frac{\pi}{2}, 3\right).

Sketch description:

  • Vertical asymptotes at x=2π,π,0,π,2πx = -2\pi, -\pi, 0, \pi, 2\pi.
  • Graph approaches ±\pm\infty at asymptotes.
  • Local maxima and minima as above.
  • Range: (,1][3,)(-\infty, 1] \cup [3, \infty).

@Dr. Microbiota


END OF SOLUTIONS