INTRODUCTION TO MATHEMATICAL METHODS ODL TEST ONE JULY INTAKE 2024

DATE : 14TH SEPTEMBER, 2024


QUESTION ONE

a. Define
i. singleton set [1]
ii. power set of a given set [1]

Answer:
i. A singleton set is a set containing exactly one element. For example, {5}\{5\} is a singleton set.
ii. The power set of a given set SS is the set of all subsets of SS, including the empty set and SS itself. It is denoted by P(S)\mathcal{P}(S). For example, if S={1,2}S = \{1, 2\}, then P(S)={,{1},{2},{1,2}\mathcal{P}(S) = \{ \emptyset, \{1\}, \{2\}, \{1, 2\} .


b. Determine whether * is commutative or associative.
i. On Q\mathbb{Q}, define ab=2ab+aa * b = 2ab + a [4]
ii. On R\mathbb{R}, define ab=(a+b)(ab)a * b = (a + b)(ab) [4]

Answer:
i.

  • Commutativity: Check if ab=baa * b = b * a. ab=2ab+a,ba=2ba+b=2ab+b(since multiplication is commutative in Q).

a * b = 2ab + a, \quad b * a = 2ba + b = 2ab + b \quad (\text{since multiplication is commutative in $\mathbb{Q}$}). abba=(2ab+a)(2ab+b)=ab.a * b - b * a = (2ab + a) - (2ab + b) = a - b. This is not always zero (e.g., a=1a = 1, b=0b = 0: 10=11 * 0 = 1, 01=00 * 1 = 0, 101 \neq 0).
Not commutative.

  • Associativity: Check if (ab)c=a(bc)(a * b) * c = a * (b * c). ab=2ab+a,(ab)c=(2ab+a)c=2(2ab+a)c+(2ab+a)

=4abc+2ac+2ab+a.a * b = 2ab + a, \quad (a * b) * c = (2ab + a) * c = 2(2ab + a)c + (2ab + a) = 4abc + 2ac + 2ab + a.

bc=2bc+b,a(bc)=a(2bc+b)=2a(2bc+b)+a

=4abc+2ab+a.b * c = 2bc + b, \quad a * (b * c) = a * (2bc + b) = 2a(2bc + b) + a = 4abc + 2ab + a. These are not equal (e.g., a=1a = 1, b=1b = 1, c=1c = 1:

(11)1=31=9(1 * 1) * 1 = 3 * 1 = 9,

1(11)=13=71 * (1 * 1) = 1 * 3 = 7,

979 \neq 7).

Not associative.

ii.

  • Commutativity: Check if ab=baa * b = b * a. ab=(a+b)(ab)=a2b+ab2,

ba=(b+a)(ba)=b2a+ba2

=a2b+ab2(since multiplication is commutative in R).a * b = (a + b)(ab) = a^2b + ab^2, \quad b * a = (b + a)(ba) = b^2a + ba^2 = a^2b + ab^2 \quad (\text{since multiplication is commutative in $\mathbb{R}$}). Thus, ab=baa * b = b * a.
Commutative.

  • Associativity: Check if (ab)c=a(bc)(a * b) * c = a * (b * c). ab=(a+b)(ab),

(ab)c=[(a+b)(ab)]c

=(ab(a+b))c.a * b = (a + b)(ab), \quad (a * b) * c = [(a + b)(ab)] * c = (ab(a + b)) * c. Let d=ab(a+b)d = ab(a + b), then: dc=(d+c)(dc)=[ab(a+b)+c][ab(a+b)c].d * c = (d + c)(dc) = [ab(a + b) + c][ab(a + b)c].

bc=(b+c)(bc),a(bc)=a[(b+c)(bc)]

=(a+bc(b+c))(abc(b+c)).b * c = (b + c)(bc), \quad a * (b * c) = a * [(b + c)(bc)] = (a + bc(b + c))(a \cdot bc(b + c)). These are not equal (e.g., a=1a = 1, b=2b = 2, c=3c = 3:

(12)3=63=162(1 * 2) * 3 = 6 * 3 = 162,

1(23)=130=9301 * (2 * 3) = 1 * 30 = 930,

162930162 \neq 930).
Not associative.


c. For the function f(x)=3x+2x4f(x) = \frac{3x+2}{x-4}, determine the domain and range of f(x)f(x) and then sketch its graph [7]

Answer:

  • Domain: Denominator x40x - 4 \neq 0, so x4x \neq 4. Domain is xR{4}x \in \mathbb{R} \setminus \{4\} or (,4)(4,)(-\infty, 4) \cup (4, \infty).

  • Range: Let y=f(x)y = f(x), solve for xx:

    y=3x+2x4    y(x4)=3x+2  

  yx4y=3x+2  

  yx3x=4y+2  

  x(y3)=4y+2.y = \frac{3x + 2}{x - 4} \implies y(x - 4) = 3x + 2 \implies yx - 4y = 3x + 2 \implies yx - 3x = 4y + 2 \implies x(y - 3) = 4y + 2.

x=4y+2y3,y3.x = \frac{4y + 2}{y - 3}, \quad y \neq 3.

Thus, range is yR{3}y \in \mathbb{R} \setminus \{3\} or (,3)(3,)(-\infty, 3) \cup (3, \infty).

  • Graph Sketch:

    • Vertical asymptote: x=4x = 4 (denominator zero).
    • Horizontal asymptote: y=3y = 3 (as x±x \to \pm \infty, f(x)3f(x) \to 3).
    • Intercepts:
      • xx-intercept: Set f(x)=0f(x) = 0, so 3x+2=03x + 2 = 0, x=23x = -\frac{2}{3}. Point: (23,0)\left(-\frac{2}{3}, 0\right).
      • yy-intercept: Set x=0x = 0, f(0)=24=12f(0) = \frac{2}{-4} = -\frac{1}{2}. Point: (0,12)\left(0, -\frac{1}{2}\right).
    • Behavior:
      • As x4x \to 4^-, f(x)f(x) \to -\infty (e.g., x=3.9x = 3.9, f(3.9)13.7f(3.9) \approx -13.7).
      • As x4+x \to 4^+, f(x)+f(x) \to +\infty (e.g., x=4.1x = 4.1, f(4.1)14.3f(4.1) \approx 14.3).
      • As xx \to \infty, f(x)3+f(x) \to 3^+ (e.g., x=5x = 5, f(5)=17>3f(5) = 17 > 3).
      • As xx \to -\infty, f(x)3f(x) \to 3^- (e.g., x=5x = -5, f(5)=1391.44<3f(-5) = \frac{-13}{-9} \approx 1.44 < 3).

Graph:

branch (x>4x > 4): approaches y=3y = 3 from above and x=4x = 4 from right going to ++\infty.


d. Write the set B={anan+1=2an,a1=3,n is a natural number}B = \{ a_n \mid a_{n+1} = 2a_n, a_1 = 3, n \text{ is a natural number} \} in roster form [3]

Answer:
The sequence is defined by a1=3a_1 = 3, an+1=2ana_{n+1} = 2a_n.

  • a1=3a_1 = 3,
  • a2=2X3=6a_2 = 2 \cdot 3 = 6,
  • a3=2X6=12a_3 = 2 \cdot 6 = 12,
  • a4=2X12=24a_4 = 2 \cdot 12 = 24,
  • a5=2X24=48a_5 = 2 \cdot 24 = 48,
    and so on.
    Thus, B={3,6,12,24,48,}B = \{3, 6, 12, 24, 48, \dots\}.
    In roster form: B={3,6,12,24,48,}B = \{3, 6, 12, 24, 48, \ldots\}.

QUESTION TWO

a. Give the meaning of
i. Transitive relation [1]
ii. Injective relation [1]

Answer:
i. A transitive relation RR on a set AA satisfies: if (a,b)R(a, b) \in R and (b,c)R(b, c) \in R, then (a,c)R(a, c) \in R for all a,b,cAa, b, c \in A.
ii. An injective relation RR from set AA to set BB satisfies: for every bBb \in B, there is at most one aAa \in A such that (a,b)R(a, b) \in R. (This means RR is "one-to-one" in the sense that no two different elements in AA relate to the same element in BB.)


b. Let the sets AA and BB be given as A=[2,7]A = [2, 7] and B=(5,11)B = (5, 11). Write down the set ABA - B and show it on the number line [3]

Answer:

  • AB={xxA and xB}A - B = \{x \mid x \in A \text{ and } x \notin B\}.

    • A=[2,7]A = [2, 7] includes all xx such that 2x72 \leq x \leq 7.
    • B=(5,11)B = (5, 11) includes all xx such that 5<x<115 < x < 11.
      Thus:
    • For x[2,5]x \in [2, 5]: xAx \in A and xBx \notin B (since x5x \leq 5 not in BB).
    • For x(5,7]x \in (5, 7]: xAx \in A but xBx \in B (since 5<x<115 < x < 11), so xABx \notin A - B.
      Therefore, AB=[2,5]A - B = [2, 5].
  • Number line representation:

      0    1    2    3    4    5    6    7    8    9    10   11
      |----|----|----|----|----|----|----|----|----|----|----|
                [========================]   (----------------)SORRY LINE THIS IS STARTING FROM 5 TO 11
              A = [2,7]                         B = (5,11)
              A-B = [2,5] (solid from 2 to 5 inclusive)
    
    • Solid circle at 2 and 5, connected by a solid line.

c. Show that 3\sqrt{3} is an irrational number [5]

Answer:
Proof by contradiction. Assume 3\sqrt{3} is rational. Then 3=ab\sqrt{3} = \frac{a}{b} where a,ba, b are integers with no common factors (coprime), and b0b \neq 0.

3=ab  

  3=a2b2  

  a2=3b2.\sqrt{3} = \frac{a}{b} \implies 3 = \frac{a^2}{b^2} \implies a^2 = 3b^2.

Thus, a2a^2 is divisible by 3, so aa is divisible by 3 (since 3 is prime). Let a=3ka = 3k for some integer kk.

(3k)2=3b2  

  9k2=3b2  

  b2=3k2.(3k)^2 = 3b^2 \implies 9k^2 = 3b^2 \implies b^2 = 3k^2.

Thus, b2b^2 is divisible by 3, so bb is divisible by 3. But then aa and bb both divisible by 3, contradicting that ab\frac{a}{b} is in lowest terms. Hence, 3\sqrt{3} is irrational.


d. Write the following recurring decimals in the form of ab\frac{a}{b}, where b0b \neq 0
i. 0.234230.23423 [4] (recurring pattern is "23" starting after "234")
ii. 2.567-2.567 [4] (recurring pattern is "67")

Answer:
i. Let x=0.234232323x = 0.234232323\ldots (repeating "23" after the first three decimals).

  • The non-repeating part is "234", so multiply by 1000 to shift it left: 1000x=234.2323231000x = 234.232323\ldots
  • Let y=0.232323y = 0.232323\ldots. Then 1000x=234+y1000x = 234 + y.
  • Solve for yy: y=0.232323,100y=23.232323  

  100yy=23  

  99y=23  

  y=2399.y = 0.232323\ldots, \quad 100y = 23.232323\ldots \implies 100y - y = 23 \implies 99y = 23 \implies y = \frac{23}{99}.

  • Substitute: 1000x=234+2399

=234×99+2399

=23166+2399

=2318999.1000x = 234 + \frac{23}{99} = \frac{234 \times 99 + 23}{99} = \frac{23166 + 23}{99} = \frac{23189}{99}.

x=2318999×1000

=2318999000.x = \frac{23189}{99 \times 1000} = \frac{23189}{99000}.

  • Simplify fraction: GCD of 23189 and 99000 is 1 (by Euclidean algorithm), so 2318999000\frac{23189}{99000} is simplified.

ii. Let x=2.5676767x = -2.5676767\ldots (repeating "67" after "5").

  • Consider the positive part first: 2.56767672.5676767\ldots.
  • Multiply by 10 to shift the non-repeating part ("5"): 10xpos=25.676767(let xpos=2.5676767)10x_{\text{pos}} = 25.676767\ldots \quad (\text{let } x_{\text{pos}} = 2.5676767\ldots)
  • Let z=0.676767z = 0.676767\ldots. Then 10xpos=25+z10x_{\text{pos}} = 25 + z.
  • Solve for zz: z=0.676767,100z=67.676767  

  100zz=67  

  99z=67  

  z=6799.z = 0.676767\ldots, \quad 100z = 67.676767\ldots \implies 100z - z = 67 \implies 99z = 67 \implies z = \frac{67}{99}.

  • Substitute: 10xpos=25+6799

=25×99+6799

=2475+6799

=254299.10x_{\text{pos}} = 25 + \frac{67}{99} = \frac{25 \times 99 + 67}{99} = \frac{2475 + 67}{99} = \frac{2542}{99}.

xpos=254299×10

=2542990.x_{\text{pos}} = \frac{2542}{99 \times 10} = \frac{2542}{990}.

  • Simplify: Divide numerator and denominator by 2: 1271495\frac{1271}{495}. GCD of 1271 and 495 is 1, so simplified.
  • Since original is negative: x=1271495x = -\frac{1271}{495}.

e. Let QRQ \subset R, simplify (QR)(Q' \cap R')' [2]

Answer:

  • Assume the universal set is R\mathbb{R} (real numbers).
  • QQ is the set of rational numbers, so Q=RQQ' = \mathbb{R} \setminus Q (irrational numbers).
  • R=RR = \mathbb{R}, so R=RR=R' = \mathbb{R} \setminus \mathbb{R} = \emptyset.
  • Then QR=(RQ)=Q' \cap R' = (\mathbb{R} \setminus Q) \cap \emptyset = \emptyset.
  • Thus, (QR)==R(Q' \cap R')' = \emptyset' = \mathbb{R} (complement relative to universal set R\mathbb{R}).
    Simplified form: R\mathbb{R}.

QUESTION THREE

a. Define
i. A function [1]
ii. Complement of the set [1]

Answer:
i. A function f:ABf: A \to B is a relation that assigns to each element aAa \in A exactly one element bBb \in B. It is often denoted by f(a)=bf(a) = b.
ii. The complement of a set AA, denoted AA' or AcA^c, is the set of all elements in the universal set that are not in AA. If universal set is UU, then A=UAA' = U \setminus A.


b. Rationalize the denominator
i. 332+3\frac{3-\sqrt{3}}{2+\sqrt{3}} [4]

ii. 4532\frac{4}{\sqrt{5-3\sqrt{2}}} [4]

Answer:
i. Multiply numerator and denominator by conjugate of denominator, 232 - \sqrt{3}:

332+32323=(33)(23)(2)2(3)2

=3X2+3X(3)+(3)X2+(3)X(3)43.\frac{3 - \sqrt{3}}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}} = \frac{(3 - \sqrt{3})(2 - \sqrt{3})}{(2)^2 - (\sqrt{3})^2} = \frac{3 \cdot 2 + 3 \cdot (-\sqrt{3}) + (-\sqrt{3}) \cdot 2 + (-\sqrt{3}) \cdot (-\sqrt{3})}{4 - 3}.

Numerator: 63323+3

=953,Denominator: 1.\text{Numerator: } 6 - 3\sqrt{3} - 2\sqrt{3} + 3 = 9 - 5\sqrt{3}, \quad \text{Denominator: } 1.

So, 9531=953\frac{9 - 5\sqrt{3}}{1} = 9 - 5\sqrt{3}.

ii. Multiply numerator and denominator by conjugate of denominator, 5+32\sqrt{5 + 3\sqrt{2}} (since (a)=a(\sqrt{a})^* = \sqrt{a} if a>0a > 0):

4532X5+325+32

=45+32(5)2(32)2

=45+322518

=45+327.\frac{4}{\sqrt{5 - 3\sqrt{2}}} \cdot \frac{\sqrt{5 + 3\sqrt{2}}}{\sqrt{5 + 3\sqrt{2}}} = \frac{4 \sqrt{5 + 3\sqrt{2}}}{\sqrt{(5)^2 - (3\sqrt{2})^2}} = \frac{4 \sqrt{5 + 3\sqrt{2}}}{\sqrt{25 - 18}} = \frac{4 \sqrt{5 + 3\sqrt{2}}}{\sqrt{7}}.

Rationalize again by multiplying numerator and denominator by 7\sqrt{7}:

45+32X77X7

=47(5+32)7

=435+2127.\frac{4 \sqrt{5 + 3\sqrt{2}} \cdot \sqrt{7}}{\sqrt{7} \cdot \sqrt{7}} = \frac{4 \sqrt{7(5 + 3\sqrt{2})}}{7} = \frac{4 \sqrt{35 + 21\sqrt{2}}}{7}.

This is the rationalized form.


c. Sketch the graphs of the following functions
i. f(x)=x4f(x) = |x| - 4 [3]
ii. h(x)=3+8xh(x) = \sqrt{3 + 8x} [3]

Answer:
i. f(x)=x4f(x) = |x| - 4:

  • Shape: V-shaped, vertex at (0,4)(0, -4).
  • Intercepts:
    • xx-intercepts: f(x)=0    x=4    x=±4f(x) = 0 \implies |x| = 4 \implies x = \pm 4. Points: (4,0)(-4, 0), (4,0)(4, 0).
    • yy-intercept: f(0)=4f(0) = -4. Point: (0,4)(0, -4).
  • Behavior: For x0x \geq 0, f(x)=x4f(x) = x - 4; for x<0x < 0, f(x)=x4f(x) = -x - 4.

Graph:

Note: Vertex at (0, -4), branches with slope 1 for x>0x > 0 and slope -1 for x<0x < 0.

ii. h(x)=3+8xh(x) = \sqrt{3 + 8x}:

  • Domain: 3+8x0    x383 + 8x \geq 0 \implies x \geq -\frac{3}{8}.
  • Intercepts:
    • xx-intercept: h(x)=0    3+8x=0    3+8x=0    x=38h(x) = 0 \implies \sqrt{3 + 8x} = 0 \implies 3 + 8x = 0 \implies x = -\frac{3}{8}. Point: (38,0)\left(-\frac{3}{8}, 0\right).
    • yy-intercept: x=0x = 0, h(0)=31.732h(0) = \sqrt{3} \approx 1.732. Point: (0,3)(0, \sqrt{3}).
  • Behavior: Increasing for x38x \geq -\frac{3}{8}, starts at (38,0)\left(-\frac{3}{8}, 0\right) and grows slowly (square root function).

Graph:

Note: Curve starts at (38,0)\left(-\frac{3}{8}, 0\right) and increases, passing through (0,3)(0,1.732)(0, \sqrt{3}) \approx (0, 1.732).


d. Determine whether the function below is even or odd or none
h(x)=x4x3h(x) = x^4 - x^3 [4]

Answer:

  • Check h(x)h(-x): h(x)=(x)4(x)3=x4(x3)=x4+x3.h(-x) = (-x)^4 - (-x)^3 = x^4 - (-x^3) = x^4 + x^3.
  • Compare to h(x)h(x) and h(x)-h(x): h(x)=x4x3,h(x)=x4+x3.h(x) = x^4 - x^3, \quad -h(x) = -x^4 + x^3.

Since h(x)h(x)h(-x) \neq h(x) 

(e.g., x=1x = 1: h(1)=1+1=2h(-1) = 1 + 1 = 2, h(1)=11=0h(1) = 1 - 1 = 0) and h(x)h(x)h(-x) \neq -h(x)

(e.g., x=1x = 1: h(1)=0-h(1) = 0, but h(1)=20h(-1) = 2 \neq 0),

the function is neither even nor odd.


OR MAYBE WE DO THIS GUYS

h(x)=x4x3h(x) = x^4 - x^3

is even, odd, or neither.


✏️ Step 1: Recall definitions

  • A function is even if: h(x)=h(x)h(-x) = h(x)
  • A function is odd if: h(x)=h(x)h(-x) = -h(x)

🔍 Step 2: Evaluate h(x)h(-x)

h(x)=(x)4(x)3=x4+x3h(-x) = (-x)^4 - (-x)^3 = x^4 + x^3

Compare with original:

  • h(x)=x4x3h(x) = x^4 - x^3
  • h(x)=x4+x3h(-x) = x^4 + x^3

Clearly:

  • h(x)h(x)h(-x) \ne h(x) → not even
  • h(x)h(x)h(-x) \ne -h(x) → not odd

✅ Final Answer:

Neither even nor odd

@Dr. Microbiota


End of Solutions