INTRODUCTION TO MATHEMATICAL METHODS QUIZ TWO JULY INTAKE 2024

DATE : 18th OCTOBER, 2024



QUESTION ONE

Which of the following is true about R={(1,2),(2,3),(3,4),(4,5)}R = \{ (1, 2), (2, 3), (3, 4), (4, 5) \}
a) RR is a relation but it’s not a function
b) RR is not both a relation and a function
c) RR is both a relation and a function
d) RR is not a relation but it’s a function

Answer: c) RR is both a relation and a function

Explanation:

  • A relation is any set of ordered pairs, so RR is a relation.
  • A function requires that each input (first element) maps to exactly one output (second element).
  • Inputs in RR: 1 maps to 2, 2 maps to 3, 3 maps to 4, 4 maps to 5. All inputs are unique and map to one output, so RR is a function.
  • Thus, RR is both a relation and a function.

Question 2:

According to the method of partial fractions, there is an equation of the form
x(x1)(x2)(x3)=Ax1+Bx2+Cx3\frac{x}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}
For some numbers A,BA, B and CC. What is the number CC?
a) 12\frac{1}{2}
b) 12\frac{1}{2}
c) -1
d) 12\frac{-1}{2}

Answer: a) 12\frac{1}{2}

Explanation:

  • Note: The numerator in the problem is xx, but the options suggest a possible typo (as the correct C=32C = \frac{3}{2} is not listed). Assuming the intended numerator is 1 for consistency with options.
  • Given: 1(x1)(x2)(x3)=Ax1+Bx2+Cx3\frac{1}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}.
  • Multiply both sides by (x1)(x2)(x3)(x-1)(x-2)(x-3):
    1=A(x2)(x3)+B(x1)(x3)+C(x1)(x2)1 = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2)
  • Solve for CC by substituting x=3x = 3 (to eliminate other terms):
    1=C(31)(32)    1=C21    C=121 = C(3-1)(3-2) \implies 1 = C \cdot 2 \cdot 1 \implies C = \frac{1}{2}
  • Thus, C=12C = \frac{1}{2}.

Question 3:

Find the solution set of 2x4>2|2x - 4| > 2
a) (1,3)
b) [1,3]
c) (,1)(3,)(-\infty, 1) \cup (3, \infty)
d) (,1][3,)(-\infty, 1] \cup [3, \infty)

Answer: c) (,1)(3,)(-\infty, 1) \cup (3, \infty)

Explanation:

  • Simplify: 2x4>2    x2>1|2x - 4| > 2 \implies |x - 2| > 1 (divide by 2).
  • Absolute inequality A>B|A| > B (with B>0B > 0) means A<BA < -B or A>BA > B.
  • So, x2>1    x2<1|x - 2| > 1 \implies x - 2 < -1 or x2>1    x<1x - 2 > 1 \implies x < 1 or x>3x > 3.
  • Interval notation: (,1)(3,)(-\infty, 1) \cup (3, \infty).

Question 4:

Which of the following functions is NOT one to one?
a) F={(0,1),(1,2),(2,3),(3,4)}F = \{(0,1),(1,2),(2,3),(3,4)\}
b) F={(0,0),(1,1),(2,2),(3,3)}F = \{(0,0),(1,1),(2,2),(3,3)\}
c) F={(0,1),(2,4),(3,1),(4,2)}F = \{(0,1),(2,4),(3,1),(4,2)\}
d) F={(0,4),(1,3),(2,2),(3,1)}F = \{(0,4),(1,3),(2,2),(3,1)\}

Answer: c) F={(0,1),(2,4),(3,1),(4,2)}F = \{(0,1),(2,4),(3,1),(4,2)\}

Explanation:

  • A function is one-to-one (injective) if each output is paired with at most one input.
  • Check outputs:
    • a) Outputs: 1, 2, 3, 4 (all distinct) → injective.
    • b) Outputs: 0, 1, 2, 3 (all distinct) → injective.
    • c) Outputs: 1, 4, 1, 2 (output 1 repeated for inputs 0 and 3) → not injective.
    • d) Outputs: 4, 3, 2, 1 (all distinct) → injective.
  • Thus, c) is not one-to-one.

Question 5:

Given that α\alpha and β\beta are the roots of the equation x23x+5=0x^2 - 3x + 5 = 0. Find the equation whose roots are βα\frac{\beta}{\alpha} and αβ\frac{\alpha}{\beta}.
a) 5x2+5x1=05x^2 + 5x - 1 = 0
b) 5x2x5=05x^2 - x - 5 = 0
c) 5x2x+5=05x^2 - x + 5 = 0
d) 5x2+x+5=05x^2 + x + 5 = 0

Answer: d) 5x2+x+5=05x^2 + x + 5 = 0

Explanation:

  • For x23x+5=0x^2 - 3x + 5 = 0, sum of roots α+β=3\alpha + \beta = 3, product αβ=5\alpha \beta = 5.
  • New roots: r1=βαr_1 = \frac{\beta}{\alpha}, r2=αβr_2 = \frac{\alpha}{\beta}.
  • Sum of new roots:
    r1+r2=βα+αβ=α2+β2αβ=(α+β)22αβαβ=32255=9105=15r_1 + r_2 = \frac{\beta}{\alpha} + \frac{\alpha}{\beta} = \frac{\alpha^2 + \beta^2}{\alpha \beta} = \frac{(\alpha + \beta)^2 - 2\alpha \beta}{\alpha \beta} = \frac{3^2 - 2 \cdot 5}{5} = \frac{9 - 10}{5} = -\frac{1}{5}
  • Product of new roots:
    r1r2=(βα)(αβ)=1r_1 r_2 = \left( \frac{\beta}{\alpha} \right) \left( \frac{\alpha}{\beta} \right) = 1
  • Quadratic equation: x2(sum)x+(product)=0    x2(15)x+1=0    x2+15x+1=0x^2 - (\text{sum})x + (\text{product}) = 0 \implies x^2 - \left( -\frac{1}{5} \right)x + 1 = 0 \implies x^2 + \frac{1}{5}x + 1 = 0.
  • Multiply by 5 to clear fraction: 5x2+x+5=05x^2 + x + 5 = 0.

Question 6:

The expression p(x)=x3αx2x+βp(x) = x^3 - \alpha x^2 - x + \beta is exactly divisible by x1x - 1 and on division by x2x - 2 gives a remainder of 21. Calculate the value of α\alpha and β\beta

αβa)55b)55c)55d)55\begin{array}{cc} \alpha & \beta \\ a) & -5 & -5 \\ b) & 5 & 5 \\ c) & -5 & 5 \\ d) & 5 & -5 \end{array}

Answer: a) α=5\alpha = -5, β=5\beta = -5

Explanation:

  • Divisible by x1x - 1 implies p(1)=0p(1) = 0:
    p(1)=13α(1)21+β=1α1+β=α+β=0    β=αp(1) = 1^3 - \alpha(1)^2 - 1 + \beta = 1 - \alpha - 1 + \beta = -\alpha + \beta = 0 \implies \beta = \alpha
  • Remainder 21 when divided by x2x - 2 implies p(2)=21p(2) = 21:
    p(2)=23α(2)22+β=84α2+β=64α+β=21p(2) = 2^3 - \alpha(2)^2 - 2 + \beta = 8 - 4\alpha - 2 + \beta = 6 - 4\alpha + \beta = 21
  • Substitute β=α\beta = \alpha:
    64α+α=21    63α=21    3α=15    α=56 - 4\alpha + \alpha = 21 \implies 6 - 3\alpha = 21 \implies -3\alpha = 15 \implies \alpha = -5
  • Then β=5\beta = -5.
  • Verify: p(x)=x3+5x2x5p(x) = x^3 + 5x^2 - x - 5, p(1)=1+515=0p(1) = 1 + 5 - 1 - 5 = 0, p(2)=8+2025=21p(2) = 8 + 20 - 2 - 5 = 21.

Question 7:

A function f: R→R is defined by f(x)=5x38f(x)=5x^3-8. The type of function is
a) one-one
b) onto
c) many-one
d) both one-one and onto

Answer: d) both one-one and onto

Explanation:

  • One-one (injective): If f(a)=f(b)f(a) = f(b), then 5a38=5b38    5a3=5b3    a3=b3    a=b5a^3 - 8 = 5b^3 - 8 \implies 5a^3 = 5b^3 \implies a^3 = b^3 \implies a = b. So injective.
  • Onto (surjective): For any yRy \in \mathbb{R}, solve 5x38=y    x3=y+85    x=y+8535x^3 - 8 = y \implies x^3 = \frac{y + 8}{5} \implies x = \sqrt[3]{\frac{y + 8}{5}}. Since cube root is defined for all reals, there is always a real xx. So surjective.
  • Thus, bijective.

Question 8:

The function f(x)=x4x3f(x) = x^4 - x^3 is......
a) Even
b) Odd
c) Neither odd nor even
d) Both odd and even

Answer: c) Neither odd nor even

Explanation:

  • Even if f(x)=f(x)f(-x) = f(x):
    f(x)=(x)4(x)3=x4(x3)=x4+x3f(x)=x4x3f(-x) = (-x)^4 - (-x)^3 = x^4 - (-x^3) = x^4 + x^3 \neq f(x) = x^4 - x^3
  • Odd if f(x)=f(x)f(-x) = -f(x):
    f(x)=x4+x3f(x)=x4+x3f(-x) = x^4 + x^3 \neq -f(x) = -x^4 + x^3
  • Thus, neither.

Question 9:

Which of the following functions is one to one.
a) f(x)=x7x+4f(x) = \frac{x - 7}{x + 4}
b) f(x)=x4f(x) = |x| - 4
c) f(x)=x24f(x) = x^2 - 4
d) f(x)=4x7f(x) = |4x - 7|

Answer: a) f(x)=x7x+4f(x) = \frac{x - 7}{x + 4}

Explanation:

  • a) Suppose f(a)=f(b)f(a) = f(b):
    a7a+4=b7b+4    (a7)(b+4)=(b7)(a+4)\frac{a-7}{a+4} = \frac{b-7}{b+4} \implies (a-7)(b+4) = (b-7)(a+4)
    ab+4a7b28=ab+4b7a28    4a7b=4b7a    11a=11b    a=bab + 4a - 7b - 28 = ab + 4b - 7a - 28 \implies 4a - 7b = 4b - 7a \implies 11a = 11b \implies a = b
    So injective.
  • b) Not injective: f(1)=14=3f(1) = |1| - 4 = -3, f(1)=14=3f(-1) = |-1| - 4 = -3, but 111 \neq -1.
  • c) Not injective: f(2)=224=0f(2) = 2^2 - 4 = 0, f(2)=(2)24=0f(-2) = (-2)^2 - 4 = 0.
  • d) Not injective: f(2)=87=1f(2) = |8 - 7| = 1, f(1.5)=67=1f(1.5) = |6 - 7| = 1, but 21.52 \neq 1.5.
  • Thus, only a) is one-to-one.

Question 10:

Which of the following can be expressed in the form f(x)=2(x3)25f(x) = 2(x - 3)^2 - 5
a) f(x)=2x24f(x) = 2x^2 - 4
b) f(x)=2x212x5f(x) = 2x^2 - 12x - 5
c) f(x)=2x212x+13f(x) = 2x^2 - 12x + 13
d) f(x)=2x26xf(x) = 2x^2 - 6x

Answer: c) f(x)=2x212x+13f(x) = 2x^2 - 12x + 13

Explanation:

  • Expand the given form:
    2(x3)25=2(x26x+9)5=2x212x+185=2x212x+132(x - 3)^2 - 5 = 2(x^2 - 6x + 9) - 5 = 2x^2 - 12x + 18 - 5 = 2x^2 - 12x + 13
  • Compare to options:
    • a) 2x242x^2 - 4
    • b) 2x212x52x^2 - 12x - 5
    • c) 2x212x+132x^2 - 12x + 13 (matches)
    • d) 2x26x2x^2 - 6x

Question 11:

The roots of the quadratic equation kx22(k+2)x+3k=0kx^2 - 2(k + 2)x + 3k = 0 differ by 2. Find the values of k.
a) 2 or -3
b) 1 or -3
c) -2/3 or -3
d) 2 or -2/3

Answer: d) 2 or -2/3

Explanation:

  • Let roots be rr and ss, with rs=2|r - s| = 2.
  • Sum r+s=2(k+2)kr + s = \frac{2(k+2)}{k}, product rs=3kk=3r s = \frac{3k}{k} = 3.
  • Use identity (rs)2=(r+s)24rs(r - s)^2 = (r + s)^2 - 4rs:
    (rs)2=22=4(r - s)^2 = 2^2 = 4
    (r+s)24rs=(2(k+2)k)243=4(k+2)2k212(r + s)^2 - 4rs = \left( \frac{2(k+2)}{k} \right)^2 - 4 \cdot 3 = \frac{4(k+2)^2}{k^2} - 12
  • Set equal:
    4(k+2)2k212=4\frac{4(k+2)^2}{k^2} - 12 = 4
    4(k+2)2k2=16\frac{4(k+2)^2}{k^2} = 16
    4(k+2)2=16k24(k+2)^2 = 16k^2
    (k+2)2=4k2(k+2)^2 = 4k^2
    k2+4k+4=4k2k^2 + 4k + 4 = 4k^2
    3k24k4=03k^2 - 4k - 4 = 0
  • Solve quadratic: discriminant d=(4)243(4)=16+48=64d = (-4)^2 - 4 \cdot 3 \cdot (-4) = 16 + 48 = 64,
    k=4±646=4±86k = \frac{4 \pm \sqrt{64}}{6} = \frac{4 \pm 8}{6}
    k=126=2ork=46=23k = \frac{12}{6} = 2 \quad \text{or} \quad k = \frac{-4}{6} = -\frac{2}{3}
  • Verify:
    • For k=2k = 2: equation 2x28x+6=02x^2 - 8x + 6 = 0, roots x=1,3x = 1, 3 (differ by 2).
    • For k=23k = -\frac{2}{3}: equation 23x283x2=0-\frac{2}{3}x^2 - \frac{8}{3}x - 2 = 0 (multiply by 3: 2x28x6=0-2x^2 -8x -6=0, or 2x2+8x+6=02x^2 +8x+6=0), roots x=1,3x = -1, -3 (differ by 2).

Question 12:

Ruth and Racheal have 45 marbles together. After losing 5 marbles each, the product of the number of marbles they have now is 124. Find out how many marbles they had to start with.
a) 31 and 4
b) 36 and 9
c) 31 and 14
d) 36 and 4

Answer: b) 36 and 9

Explanation:

  • Let initial marbles: Ruth rr, Racheal ss, with r+s=45r + s = 45.
  • After loss: (r5)(r - 5), (s5)(s - 5), product (r5)(s5)=124(r - 5)(s - 5) = 124.
  • Expand:
    (r5)(s5)=rs5(r+s)+25=124(r - 5)(s - 5) = rs - 5(r + s) + 25 = 124
    Substitute r+s=45r + s = 45:
    rs5(45)+25=124    rs225+25=124    rs200=124    rs=324rs - 5(45) + 25 = 124 \implies rs - 225 + 25 = 124 \implies rs - 200 = 124 \implies rs = 324
  • Solve r+s=45r + s = 45, rs=324rs = 324: quadratic equation t245t+324=0t^2 - 45t + 324 = 0.
  • Discriminant d=45241324=20251296=729d = 45^2 - 4 \cdot 1 \cdot 324 = 2025 - 1296 = 729,
    t=45±7292=45±272t = \frac{45 \pm \sqrt{729}}{2} = \frac{45 \pm 27}{2}
    t=722=36ort=182=9t = \frac{72}{2} = 36 \quad \text{or} \quad t = \frac{18}{2} = 9
  • Thus, marbles are 36 and 9.
  • Verify: After loss, 31 and 4, product 31×4=12431 \times 4 = 124.

Question 13:

Factorize f(x)=x32x2x+2f(x) = x^3 - 2x^2 - x + 2
a) (2x-2)(x+1)(x-1)
b) (2x-2)(x+1)(x-2)
c) (x-2)(x+1)(x-1)
d) (2x-1)(x+1)(x-1)

Answer: c) (x-2)(x+1)(x-1)

Explanation:

  • Possible rational roots: factors of 2 over 1, so ±1,±2\pm 1, \pm 2.
  • f(1)=121+2=0f(1) = 1 - 2 - 1 + 2 = 0, so (x1)(x - 1) is a factor.
  • Synthetic division by (x1)(x - 1):
    1 | 1  -2  -1  2
          |     1  -1  -2
        ----------------
          1  -1  -2 | 0
    
    Quotient: x2x2x^2 - x - 2.
  • Factor quotient: x2x2=(x2)(x+1)x^2 - x - 2 = (x - 2)(x + 1).
  • Thus, f(x)=(x1)(x2)(x+1)f(x) = (x - 1)(x - 2)(x + 1).
  • Option c) is (x2)(x+1)(x1)(x-2)(x+1)(x-1), same as above.

Question 14:

Find the remainder when p(x)=6x3+13x24p(x) = 6x^3 + 13x^2 - 4 is divided by 2x32x - 3
a) 40.5
b) 45
c) 45.5
d) 70

Answer: c) 45.5

Explanation:

  • Remainder theorem: when dividing by 2x32x - 3, root is x=32x = \frac{3}{2}, remainder is p(32)p\left( \frac{3}{2} \right).
  • Compute:
    p(32)=6(32)3+13(32)24=6278+13944=1628+11744p\left( \frac{3}{2} \right) = 6 \left( \frac{3}{2} \right)^3 + 13 \left( \frac{3}{2} \right)^2 - 4 = 6 \cdot \frac{27}{8} + 13 \cdot \frac{9}{4} - 4 = \frac{162}{8} + \frac{117}{4} - 4
  • Convert to fractions with denominator 8:
    1628+11728488=1628+2348328=162+234328=3648=45.5\frac{162}{8} + \frac{117 \cdot 2}{8} - \frac{4 \cdot 8}{8} = \frac{162}{8} + \frac{234}{8} - \frac{32}{8} = \frac{162 + 234 - 32}{8} = \frac{364}{8} = 45.5
  • Thus, remainder is 45.5.

Question 15:

Determine the nature of the roots of a quadratic function x2×1x=2\frac{x}{2} \times \frac{1}{x} = 2
a) Two distinct real roots
b) Two distinct complex roots
c) One real root
d) No real roots

Answer: d) No real roots

Explanation:

  • The equation is x21x=2\frac{x}{2} \cdot \frac{1}{x} = 2, which simplifies to 12=2\frac{1}{2} = 2, a contradiction.
  • Thus, no real solutions.
  • Note: The equation is not quadratic, but the contradiction implies no real roots.

Question 16:

Equation of (x+1)2x2=0(x+1)^2 \cdot x^2 = 0 has number of real roots equal to:
a) 1
b) 2
c) 3
d) 4

Answer: d) 4

Explanation:

  • Equation: (x+1)2x2=0(x+1)^2 x^2 = 0.
  • Roots when (x+1)2=0(x+1)^2 = 0 or x2=0x^2 = 0:
    • x=1x = -1 (multiplicity 2),
    • x=0x = 0 (multiplicity 2).
  • Counting multiplicity, there are 4 real roots.
  • Note: The polynomial is degree 4, and all roots are real with multiplicities.

Question 17:

The sum of two numbers is 27 and product is 182. The numbers are:
a) 12 and 13
b) 13 and 14
c) 12 and 15
d) 13 and 24

Answer: b) 13 and 14

Explanation:

  • Let numbers be xx and yy: x+y=27x + y = 27, xy=182x y = 182.
  • Quadratic equation: t227t+182=0t^2 - 27t + 182 = 0.
  • Discriminant d=(27)241182=729728=1d = (-27)^2 - 4 \cdot 1 \cdot 182 = 729 - 728 = 1,
    t=27±12=27±12t = \frac{27 \pm \sqrt{1}}{2} = \frac{27 \pm 1}{2}
    t=282=14ort=262=13t = \frac{28}{2} = 14 \quad \text{or} \quad t = \frac{26}{2} = 13
  • Thus, numbers are 13 and 14.

Question 18:

The roots of quadratic equation 2x2+x+4=02x^2 + x + 4 = 0 are:
a) Positive and negative
b) Both Positive
c) Both Negative
d) No real roots

Answer: d) No real roots

Explanation:

  • Discriminant d=b24ac=12424=132=31<0d = b^2 - 4ac = 1^2 - 4 \cdot 2 \cdot 4 = 1 - 32 = -31 < 0.
  • Negative discriminant implies no real roots (complex roots).

Question 19:

If one root of equation 4x22x+k4=04x^2 - 2x + k - 4 = 0 is reciprocal of the other. The value of kk is:
a) -8
b) 8
c) -4
d) 4

Answer: b) 8

Explanation:

  • Note: The equation is interpreted as 4x22x+(k4)=04x^2 - 2x + (k - 4) = 0 (assuming typo in notation).
  • Let roots be rr and 1r\frac{1}{r}.
  • Product of roots: r1r=1=ca=k44r \cdot \frac{1}{r} = 1 = \frac{c}{a} = \frac{k - 4}{4}.
  • So:
    k44=1    k4=4    k=8\frac{k - 4}{4} = 1 \implies k - 4 = 4 \implies k = 8
  • Verify: For k=8k = 8, equation 4x22x+4=04x^2 - 2x + 4 = 0. Roots: d=(2)2444=464=60<0d = (-2)^2 - 4 \cdot 4 \cdot 4 = 4 - 64 = -60 < 0 (complex), but product is 44=1\frac{4}{4} = 1, so if roots exist, they are reciprocals.

Question 20:

Find the turning point of the graph of a quadratic function f(x)=2x46x+10f(x) = 2x^4 - 6x + 10
a) {-8,10}
b) {2,2}
c) {2,10}
d) {-8,2}

Answer: b) {2,2}

Explanation:

  • Note: The function is assumed to be quadratic, likely f(x)=2x28x+10f(x) = 2x^2 - 8x + 10 (typo in exponent).
  • For f(x)=2x28x+10f(x) = 2x^2 - 8x + 10, vertex at x=b2a=822=84=2x = -\frac{b}{2a} = -\frac{-8}{2 \cdot 2} = \frac{8}{4} = 2.
  • Then y=f(2)=2(2)28(2)+10=816+10=2y = f(2) = 2(2)^2 - 8(2) + 10 = 8 - 16 + 10 = 2.
  • Turning point (vertex) is (2,2)(2, 2), so {2, 2}.

Question 21:

What is the line of the symmetry of the graph of a quadratic equation
f(x)=x25x10f(x) = -x^2 - 5x - 10
a) x=5/2x = 5/2
b) x=2/5x = 2/5
c) x=5/2x = -5/2
d) x=2/5x = -2/5

Answer: c) x=5/2x = -5/2

Explanation:

  • Axis of symmetry for ax2+bx+cax^2 + bx + c is x=b2ax = -\frac{b}{2a}.
  • Here, a=1a = -1, b=5b = -5:
    x=52(1)=52=52x = -\frac{-5}{2 \cdot (-1)} = -\frac{5}{-2} = -\frac{5}{2}
  • Thus, x=52x = -\frac{5}{2}.

Question 22:

Let α\alpha and β\beta be the roots of a quadratic equation f(x)=x2+5x+6f(x) = x^2 + 5x + 6. Evaluate 4α4β\frac{4}{\alpha} - \frac{4}{\beta}
a) -2/3 or 2/3
b) 5 or 6
c) -5 or 6
d) -2/5 or 2/5

Answer: a) -2/3 or 2/3

Explanation:

  • Roots of x2+5x+6=0x^2 + 5x + 6 = 0: factors as (x+2)(x+3)=0(x+2)(x+3)=0, so α=2,β=3\alpha = -2, \beta = -3 or vice versa.
  • Compute:
    4α4β=4(1α1β)=4(βααβ)\frac{4}{\alpha} - \frac{4}{\beta} = 4 \left( \frac{1}{\alpha} - \frac{1}{\beta} \right) = 4 \left( \frac{\beta - \alpha}{\alpha \beta} \right)
  • α+β=5\alpha + \beta = -5, αβ=6\alpha \beta = 6, (βα)2=(α+β)24αβ=2524=1(\beta - \alpha)^2 = (\alpha + \beta)^2 - 4\alpha\beta = 25 - 24 = 1, so βα=1|\beta - \alpha| = 1.
  • Thus:
    βααβ=±16\frac{\beta - \alpha}{\alpha \beta} = \frac{\pm 1}{6}
    4±16=±46=±234 \cdot \frac{\pm 1}{6} = \pm \frac{4}{6} = \pm \frac{2}{3}
  • So 23-\frac{2}{3} or 23\frac{2}{3}.

Question 23:

Let α\alpha and β\beta be the roots of a quadratic equation x2+7x3=0x^2 + 7x - 3 = 0. Find the quadratic equation whose roots are 2α12\alpha - 1 and 2β12\beta - 1
a) x216x+3=0x^2 - 16x + 3 = 0
b) x2+16x3=0x^2 + 16x - 3 = 0
c) x216x3=0x^2 - 16x - 3 = 0
d) x2+16x+3=0x^2 + 16x + 3 = 0

Answer: d) x2+16x+3=0x^2 + 16x + 3 = 0

Explanation:

  • Sum α+β=7\alpha + \beta = -7, product αβ=3\alpha \beta = -3.
  • New roots: γ=2α1\gamma = 2\alpha - 1, δ=2β1\delta = 2\beta - 1.
  • Sum: γ+δ=(2α1)+(2β1)=2(α+β)2=2(7)2=142=16\gamma + \delta = (2\alpha - 1) + (2\beta - 1) = 2(\alpha + \beta) - 2 = 2(-7) - 2 = -14 - 2 = -16.
  • Product: γδ=(2α1)(2β1)=4αβ2α2β+1=4αβ2(α+β)+1=4(3)2(7)+1=12+14+1=3\gamma \delta = (2\alpha - 1)(2\beta - 1) = 4\alpha\beta - 2\alpha - 2\beta + 1 = 4\alpha\beta - 2(\alpha + \beta) + 1 = 4(-3) - 2(-7) + 1 = -12 + 14 + 1 = 3.
  • Quadratic: x2(γ+δ)x+γδ=x2(16)x+3=x2+16x+3x^2 - (\gamma + \delta)x + \gamma \delta = x^2 - (-16)x + 3 = x^2 + 16x + 3.

Question 24:

Determine the values of p for which the quadratic f(x)=2x2+px+8=0f(x) = 2x^2 + px + 8 = 0 has equal roots
a) (,8)(8,)(-\infty, -8) \cup (8, \infty)
b) -8 or 8
c) {-8,8}
d) 8

Answer: c) {-8,8}

Explanation:

  • Equal roots when discriminant d=0d = 0:
    d=p2428=p264=0d = p^2 - 4 \cdot 2 \cdot 8 = p^2 - 64 = 0
    p2=64    p=±8p^2 = 64 \implies p = \pm 8
  • Values are p=8p = -8 or p=8p = 8, so set {-8, 8}.

Question 25:

Solve 2x3x+4=3\left| \frac{2x-3}{x+4} \right| = 3
a) 3 or 9
b) -3 or 9
c) -3 or -9
d) 3 or -9

Answer: a) 3 or 9

Explanation:

  • Note: The denominator is assumed to be x4x - 4 (typo in sign) for consistency with options.
  • Equation: 2x3x4=3\left| \frac{2x-3}{x-4} \right| = 3.
  • Cases:
    • Case 1: 2x3x4=3\frac{2x-3}{x-4} = 3
      2x3=3(x4)    2x3=3x12    3+12=3x2x    x=92x - 3 = 3(x - 4) \implies 2x - 3 = 3x - 12 \implies -3 + 12 = 3x - 2x \implies x = 9
      Verify: 18394=155=3\left| \frac{18-3}{9-4} \right| = \left| \frac{15}{5} \right| = 3.
    • Case 2: 2x3x4=3\frac{2x-3}{x-4} = -3
      2x3=3(x4)    2x3=3x+12    2x+3x=12+3    5x=15    x=32x - 3 = -3(x - 4) \implies 2x - 3 = -3x + 12 \implies 2x + 3x = 12 + 3 \implies 5x = 15 \implies x = 3
      Verify: 6334=31=3\left| \frac{6-3}{3-4} \right| = \left| \frac{3}{-1} \right| = 3.
  • Solutions: x=9x = 9 or x=3x = 3.

@Dr. Microbiota


End of Solutions