INTRODUCTION TO MATHEMATICAL METHODS SEMESTER ONE EXAMINATION JULY INTAKE 2017

DATE : 10th MAY, 2017



QUESTION ONE

(a) Define the following:
(i) Singleton set
(ii) Product of two sets

Answer:
(i) Singleton set: A set containing exactly one element.
(ii) Product of two sets: The set of all ordered pairs (a,b)(a, b) where aAa \in A and bBb \in B, denoted A×BA \times B.


(b) Let A={3,15,5,0.251,15,7,2,4}A = \{-3, -\frac{1}{5}, -\sqrt{5}, 0.251, \frac{1}{\sqrt{5}}, \sqrt{7}, \sqrt{2}, 4\} be a universal set. List the elements of A which are:
(i) Integers
(ii) Rational numbers
(iii) Irrational numbers

Answer:

  • Integers: Elements with no fractional/decimal part.
    3, 4\boxed{-3,\ 4}
  • Rational numbers: Numbers expressible as pq\frac{p}{q} (p,qp, q integers, q0q \neq 0).
    3, 15, 0.251, 4\boxed{-3,\ -\frac{1}{5},\ 0.251,\ 4}
    Explanation:
    • 3=31-3 = \frac{-3}{1}, 4=414 = \frac{4}{1} (integers are rational).
    • 15-\frac{1}{5} is a fraction.
    • 0.251=25110000.251 = \frac{251}{1000} (terminating decimal).
  • Irrational numbers: Non-repeating, non-terminating decimals.
    5, 15, 7, 2\boxed{-\sqrt{5},\ \frac{1}{\sqrt{5}},\ \sqrt{7},\ \sqrt{2}}
    Explanation: 5,7,2\sqrt{5}, \sqrt{7}, \sqrt{2} are irrational, and reciprocals/negatives of irrationals remain irrational.

(c) Given A={1,2,3}A = \{1, 2, 3\}, B={p,q},C={r}B = \{p, q\}, C = \{r\}.
(i) Find A×BA \times B
(ii) Show that A×BB×AA \times B \neq B \times A

Answer:
(i) A×B={(1,p), (1,q), (2,p), (2,q), (3,p), (3,q)} A \times B = \{(1, p),\ (1, q),\ (2, p),\ (2, q),\ (3, p),\ (3, q)\}
(ii) B×A={(p,1), (p,2), (p,3), (q,1), (q,2), (q,3)} B \times A = \{(p, 1),\ (p, 2),\ (p, 3),\ (q, 1),\ (q, 2),\ (q, 3)\}
Since (1,p)(p,1)(1, p) \neq (p, 1), A×BB×AA \times B \neq B \times A.


(d) Express 0.7142 in fractional form.

Answer:
Let x=0.7142x = 0.7142.
Multiply by 10000:
10000x=714210000x = 7142
x=714210000=35715000x = \frac{7142}{10000} = \frac{3571}{5000}
Explanation: Simplify by dividing numerator and denominator by 2.


(e) Find dydx\frac{dy}{dx} of the following.
(i) y=(x3+6)e3xy = (x^3 + 6)e^{3x}
(ii) y=cosxxy = \frac{\cos x}{x}

Answer:

(i) y=(x3+6)e3xy = (x^3 + 6)e^{3x}

This is a product of two functions:

  • u=x3+6u = x^3 + 6
  • v=e3xv = e^{3x}

Using the product rule:

dydx=uv+uv\frac{dy}{dx} = u'v + uv'

  • u=ddx(x3+6)=3x2u' = \frac{d}{dx}(x^3 + 6) = 3x^2
  • v=ddx(e3x)=3e3xv' = \frac{d}{dx}(e^{3x}) = 3e^{3x}

So:

dydx=3x2e3x+(x3+6)3e3x\frac{dy}{dx} = 3x^2 \cdot e^{3x} + (x^3 + 6) \cdot 3e^{3x}

Factor out 3e3x3e^{3x}:

dydx=3e3x(x2+x3+6)=3e3x(x3+x2+6)\frac{dy}{dx} = 3e^{3x}(x^2 + x^3 + 6) = 3e^{3x}(x^3 + x^2 + 6)


(ii) y=cosxxy = \cos x^x

This one’s a bit trickier—it’s not clear whether you meant:

  • Option A: y=cos(xx)y = \cos(x^x)
  • Option B: y=cosxxy = \frac{\cos x}{x}

Let me solve both interpretations:


Option A: y=cos(xx)y = \cos(x^x)

Let u=xxu = x^x. Then:

  • First, find dudx\frac{du}{dx}:

    xx=exlnxddx(xx)=exlnx(lnx+1)=xx(lnx+1)x^x = e^{x \ln x} \Rightarrow \frac{d}{dx}(x^x) = e^{x \ln x} \cdot \left( \ln x + 1 \right) = x^x(\ln x + 1)
  • Now differentiate y=cos(u)y = \cos(u):

    dydx=sin(xx)ddx(xx)=sin(xx)xx(lnx+1)\frac{dy}{dx} = -\sin(x^x) \cdot \frac{d}{dx}(x^x) = -\sin(x^x) \cdot x^x(\ln x + 1)

Option B: y=cosxxy = \frac{\cos x}{x}

Use the quotient rule:

dydx=x(sinx)cosx(1)x2=xsinxcosxx2\frac{dy}{dx} = \frac{x(-\sin x) - \cos x(1)}{x^2} = \frac{-x \sin x - \cos x}{x^2}




(i) Product Rule:

. Differentiate y=(x3+6)e3xy = (x^3 + 6)e^{3x}

This is a product of two functions:

  • u(x)=x3+6u(x) = x^3 + 6
  • v(x)=e3xv(x) = e^{3x}

Using the product rule:

dydx=u(x)v(x)+u(x)v(x)\frac{dy}{dx} = u'(x)v(x) + u(x)v'(x)

Compute the derivatives:

  • u(x)=3x2u'(x) = 3x^2
  • v(x)=3e3xv'(x) = 3e^{3x}

Substitute into the product rule:

dydx=3x2e3x+(x3+6)3e3x\frac{dy}{dx} = 3x^2 \cdot e^{3x} + (x^3 + 6) \cdot 3e^{3x}

Factor out 3e3x3e^{3x}:

dydx=3e3x(x2+x3+6)=3e3x(x3+x2+6)\frac{dy}{dx} = 3e^{3x}(x^2 + x^3 + 6) = 3e^{3x}(x^3 + x^2 + 6)


(ii) Quotient Rule: ddx[uv]=uvuvv2\frac{d}{dx}\left[\frac{u}{v}\right] = \frac{u'v - uv'}{v^2}, where u=cosxu = \cos x, v=xv = x.

Differentiate y=cos(x)xy = \frac{\cos(x)}{x}

This is a quotient of two functions:

  • u(x)=cos(x)u(x) = \cos(x)
  • v(x)=xv(x) = x

Using the quotient rule:

dydx=u(x)v(x)u(x)v(x)[v(x)]2\frac{dy}{dx} = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}

Compute the derivatives:

  • u(x)=sin(x)u'(x) = -\sin(x)
  • v(x)=1v'(x) = 1

Substitute into the quotient rule:

dydx=(sin(x))xcos(x)1x2=xsin(x)cos(x)x2\frac{dy}{dx} = \frac{(-\sin(x)) \cdot x - \cos(x) \cdot 1}{x^2} = \frac{-x\sin(x) - \cos(x)}{x^2}

Factor out the negative sign:

dydx=xsin(x)+cos(x)x2\frac{dy}{dx} = -\frac{x\sin(x) + \cos(x)}{x^2}


Question Two

(a) Define the following:
(i) Transitive relation
(ii) Injection function

Answer:
(i) Transitive relation: If (a,b)R(a, b) \in \mathfrak{R} and (b,c)R(b, c) \in \mathfrak{R}, then (a,c)R(a, c) \in \mathfrak{R}.
(ii) Injection function: A function where distinct inputs map to distinct outputs (f(a)=f(b)    a=bf(a) = f(b) \implies a = b).


(b) Determine whether the relation R={(x,y):y is divisible by x}\mathfrak{R} = \{(x, y): y \text{ is divisible by } x\} in A={1,2,3,4,5,6}A = \{1, 2, 3, 4, 5, 6\} is reflexive, symmetric, and transitive.

Answer:

  • Reflexive: Yes, since xxx \mid x (e.g., (1,1),(2,2)(1,1), (2,2)).
  • Symmetric: No. Counterexample: (2,4)R(2,4) \in \mathfrak{R} (4 divisible by 2), but (4,2)R(4,2) \notin \mathfrak{R} (2 not divisible by 4).
  • Transitive: Yes. If xyx \mid y and yzy \mid z, then xzx \mid z (e.g., (2,4)(2,4) and (4,8)(4,8)     (2,8)\implies (2,8), but 8 not in AA; consider (1,2)(1,2) and (2,4)    (1,4)(2,4) \implies (1,4)).

(c) A function f:ZZf : \mathbb{Z} \rightarrow \mathbb{Z} defined as:

f(x)={1+x,1x<22x11,2x<43x101,4x<6f(x) = \begin{cases} 1 + x, & 1 \leq x < 2 \\ 2x - 11, & 2 \leq x < 4 \\ 3x - 101, & 4 \leq x < 6 \end{cases}

(i) Domain
(ii) Range
(iii) f(4)f(4)

Answer:
(i) Domain: 1x<61 \leq x < 6 (all integers in [1,6)[1, 6)).
{1,2,3,4,5}\boxed{\{1, 2, 3, 4, 5\}}
(ii) Range:

  • For x=1x=1: f(1)=1+1=2f(1) = 1+1=2
  • x=2x=2: f(2)=2(2)11=7f(2) = 2(2)-11 = -7
  • x=3x=3: f(3)=2(3)11=5f(3) = 2(3)-11 = -5
  • x=4x=4: f(4)=3(4)101=89f(4) = 3(4)-101 = -89
  • x=5x=5: f(5)=3(5)101=86f(5) = 3(5)-101 = -86
    Range: {2,7,5,89,86}\boxed{\{2, -7, -5, -89, -86\}}
    (iii) f(4)=3(4)101=89f(4) = 3(4) - 101 = \boxed{-89}

(d) Classify f(x)=2x+3x3,x3f(x) = \frac{2x + 3}{x - 3}, \, x \neq 3 as injection, surjection, or bijection.

Answer:

  • Injection: Check if f(a)=f(b)    a=bf(a) = f(b) \implies a = b. 2a+3a3=2b+3b3  
  •   (2a+3)(b3)=(2b+3)(a3)\frac{2a+3}{a-3} = \frac{2b+3}{b-3} \implies (2a+3)(b-3) = (2b+3)(a-3) Simplify: 2ab6a+3b9=2ab6b+3a9

  6a+3b=6b+3a  

  9a=9b  

  a=b2ab - 6a + 3b - 9 = 2ab - 6b + 3a - 9 \implies -6a + 3b = -6b + 3a \implies -9a = -9b \implies a = b.
Yes, injection.

  • Surjection: Check if range =R= \mathbb{R} (codomain). As xx \to \infty, f(x)2f(x) \to 2, and

vertical asymptote at x=3x=3. Range is R{2}\mathbb{R} \setminus \{2\}, not all R\mathbb{R}. Not surjection.

  • Bijection: No (since not surjection).

(e) Let f(x)=2x3f(x) = 2x - 3, g(x)=x+32g(x) = \frac{x + 3}{2}. Show fog(x)=gof(x)fog(x) = gof(x).

Answer:
Compute:

  • fog(x)=f(g(x))=f(x+32)=2(x+32)3
  • =x+33=xfog(x) = f(g(x)) = f\left(\frac{x+3}{2}\right) = 2\left(\frac{x+3}{2}\right) - 3 = x + 3 - 3 = x
  • gof(x)=g(f(x))=g(2x3)=(2x3)+32
  • =2x2=xgof(x) = g(f(x)) = g(2x - 3) = \frac{(2x-3)+3}{2} = \frac{2x}{2} = x
    Thus, fog(x)=gof(x)=xfog(x) = gof(x) = x.

Question Three

(a) State the following:
(i) The factor theorem
(ii) Natural exponential function

Answer:
(i) Factor theorem: If p(a)=0p(a) = 0, then (xa)(x - a) is a factor of polynomial p(x)p(x).
(ii) Natural exponential function: exe^x, where e2.71828e \approx 2.71828.


(b) Given α,β\alpha, \beta are roots of 3x2+x+2=03x^{2} + x + 2 = 0. Find α2+β2\alpha^{2} + \beta^{2}.

Answer:
For quadratic ax2+bx+c=0ax^2 + bx + c = 0:

α+β=ba=13,αβ=ca=23\alpha + \beta = -\frac{b}{a} = -\frac{1}{3}, \quad \alpha\beta = \frac{c}{a} = \frac{2}{3}

α2+β2=(α+β)22αβ=(13)22(23)

=1943

=19129

=119\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(-\frac{1}{3}\right)^2 - 2\left(\frac{2}{3}\right) = \frac{1}{9} - \frac{4}{3} = \frac{1}{9} - \frac{12}{9} = \boxed{-\frac{11}{9}}


(c) Polynomial p(x)=2x3+qx2+px+6p(x) = 2x^{3} + qx^{2} + px + 6 is divisible by x2x-2 and leaves remainder 12-12 when divided by x+1x+1. Find q,pq, p.

Answer:

  • Divisible by x2x-2     p(2)=0\implies p(2) = 0: 2(8)+q(4)+p(2)+6=0    16+4q+2p+6=0    4q+2p=22(1)2(8) + q(4) + p(2) + 6 = 0 \implies 16 + 4q + 2p + 6 = 0 \implies 4q + 2p = -22 \quad \text{(1)}
  • Remainder 12-12 when divided by x+1x+1     p(1)=12\implies p(-1) = -12: 2(1)3+q(1)2+p(1)+6=12    2+qp+6=12    qp=16(2)2(-1)^3 + q(-1)^2 + p(-1) + 6 = -12 \implies -2 + q - p + 6 = -12 \implies q - p = -16 \quad \text{(2)}

Solve system:
From (2): q=p16q = p - 16.
Substitute into (1):

4(p16)+2p=22  

  4p64+2p=22  

  6p=42  

  p=74(p - 16) + 2p = -22 \implies 4p - 64 + 2p = -22 \implies 6p = 42 \implies p = 7

Then q=716=9q = 7 - 16 = -9.
q=9, p=7\boxed{q = -9,\ p = 7}


(d) Factorise f(x)=x32x2x+2f(x) = x^{3} - 2x^{2} - x + 2, sketch graph, and solve f(x)0f(x) \leq 0.

Answer:

  • Factorization:
    Possible roots: ±1,±2\pm1, \pm2.
    f(1)=121+2=0f(1) = 1 - 2 - 1 + 2 = 0     (x1)\implies (x-1) factor.
    Polynomial division: x32x2x+2x1=x2x2\frac{x^3 - 2x^2 - x + 2}{x-1} = x^2 - x - 2 Factor quadratic: x2x2=(x2)(x+1)x^2 - x - 2 = (x-2)(x+1).
    Thus, f(x)=(x1)(x2)(x+1)f(x) = (x-1)(x-2)(x+1).
  • Graph:
    • Intercepts:
      • xx-intercepts: x=1,1,2x = -1, 1, 2.
      • yy-intercept: f(0)=2f(0) = 2.
    • Behavior:
      • As xx \to \infty, f(x)f(x) \to \infty.
      • As xx \to -\infty, f(x)f(x) \to -\infty.
        Sketch: Cubic with roots at 1,1,2-1, 1, 2, passing through (0,2)(0,2).
  • Solution to f(x)0f(x) \leq 0:
    Sign chart:
    Interval x<1x < -1 1<x<1-1 < x < 1 1<x<21 < x < 2 x>2x > 2
    (x+1)(x+1) - ++ ++ ++
    (x1)(x-1) - - ++ ++
    (x2)(x-2) - - - ++
    f(x)f(x) - ++ - ++
    f(x)0f(x) \leq 0 when x(,1][1,2]x \in (-\infty, -1] \cup [1, 2].
    Solution set: (,1][1,2]\boxed{(-\infty, -1] \cup [1, 2]}

OR USE THIS BELOW

To solve the inequality

f(x)=x32x2x+20f(x) = x^3 - 2x^2 - x + 2 \leq 0

we use the factorized form:

f(x)=(x1)(x2)(x+1)f(x) = (x - 1)(x - 2)(x + 1)


🧮 Step-by-step Sign Analysis

Critical points (roots):

  • x=1,1,2x = -1, 1, 2

Intervals to test:

  • (,1)(-\infty, -1)
  • (1,1)(-1, 1)
  • (1,2)(1, 2)
  • (2,)(2, \infty)

Sign of each factor in each interval:

Interval x+1x + 1 x1x - 1 x2x - 2 f(x)f(x) Sign
x<1x < -1
1<x<1-1 < x < 1 + +
1<x<21 < x < 2 + +
x>2x > 2 + + + +

✅ Final Answer

f(x)0on(,1][1,2]f(x) \leq 0 \quad \text{on} \quad (-\infty, -1] \cup [1, 2]

This includes the points where f(x)=0f(x) = 0, namely x=1,1,2x = -1, 1, 2, and the intervals where the function is negative.


(e) Differentiate from first principles:
(i) f(x)=1xf(x) = \frac{1}{x}
(ii) f(x)=x2+6x+9f(x) = x^{2} + 6x + 9

Answer:

First principle: f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.

(i) f(x)=limh01x+h1xh

=limh0x(x+h)x(x+h)h

=limh0hhx(x+h)

=limh01x(x+h)

=1x2f'(x) = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \lim_{h \to 0} \frac{\frac{x - (x+h)}{x(x+h)}}{h} = \lim_{h \to 0} \frac{-h}{h x (x+h)} = \lim_{h \to 0} \frac{-1}{x(x+h)} = \boxed{-\frac{1}{x^2}}


(ii) f(x)=limh0[(x+h)2+6(x+h)+9][x2+6x+9]h

=limh0[x2+2xh+h2+6x+6h+9][x2+6x+9]h

=limh02xh+h2+6hh

=limh0(2x+h+6)

=2x+6f'(x) = \lim_{h \to 0} \frac{[(x+h)^2 + 6(x+h) + 9] - [x^2 + 6x + 9]}{h} = \lim_{h \to 0} \frac{[x^2 + 2xh + h^2 + 6x + 6h + 9] - [x^2 + 6x + 9]}{h} = \lim_{h \to 0} \frac{2xh + h^2 + 6h}{h} = \lim_{h \to 0} (2x + h + 6) = \boxed{2x + 6}


Question Four

(a) Find exact values:
(i) sin15\sin 15^\circ
(ii) cos7π12\cos \frac{7\pi}{12}

Answer:
(i) sin15=sin(4530)=sin45cos30cos45sin30\sin 15^\circ = \sin(45^\circ - 30^\circ) = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ

=(22)(32)(22)(12)

=6424=624= \left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) - \left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right) = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \boxed{\frac{\sqrt{6} - \sqrt{2}}{4}}

(ii) cos7π12=cos(105)=cos(60+45)=cos60cos45sin60sin45\cos \frac{7\pi}{12} = \cos\left(105^\circ\right) = \cos(60^\circ + 45^\circ) = \cos 60^\circ \cos 45^\circ - \sin 60^\circ \sin 45^\circ

=(12)(22)(32)(22)

=2464

=264= \left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right) - \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4} = \boxed{\frac{\sqrt{2} - \sqrt{6}}{4}}


(b) For y=5sin(x+π2)y = 5\sin\left(x + \frac{\pi}{2}\right), find period, amplitude, phase shift. Sketch graph.

Answer:

  • Amplitude: 5=5|5| = 5.
  • Period: 2π1=2π\frac{2\pi}{1} = 2\pi.
  • Phase shift: π2-\frac{\pi}{2} (left by π2\frac{\pi}{2}).
  • Graph:
    • Standard sine wave shifted left by π2\frac{\pi}{2}.
    • Key points: At x=π2x = -\frac{\pi}{2}, y=5sin(0)=0y = 5\sin(0) = 0; at x=0x = 0, y=5sin(π2)=5y = 5\sin(\frac{\pi}{2}) = 5; etc.

(c) Solve:

log10(xy)=1

\log_{10}(x - y) = 1 logeex+2logeey=4\log_{e} e^{x} + 2\log_{e} e^{y} = 4

Answer:
Simplify:

  • First equation: log10(xy)=1    xy=101=10\log_{10}(x - y) = 1 \implies x - y = 10^1 = 10.
  • Second equation: logeex=x\log_e e^x = x, 2logeey=2y2\log_e e^y = 2y     x+2y=4\implies x + 2y = 4.
    Solve system:

xy=10(1)x - y = 10 \quad (1) x+2y=4(2)x + 2y = 4 \quad (2)

Subtract (1) from (2): (x+2y)(xy)=410  

  3y=6  

  y=2(x + 2y) - (x - y) = 4 - 10 \implies 3y = -6 \implies y = -2.
From (1): x(2)=10  

  x+2=10  

  x=8x - (-2) = 10 \implies x + 2 = 10 \implies x = 8.

Check: log10(8(2))=log10(10)=1\log_{10}(8 - (-2)) = \log_{10}(10) = 1, and 8+2(2)=84=48 + 2(-2) = 8 - 4 = 4.
Solution: x=8, y=2

OR USE THIS BELOW

\boxed{x = 8,\ y = -2}

Let’s solve the system step by step:


✏️ Given:

1. log10(xy)=1\log_{10}(x - y) = 1
2. logeex+2logeey=4\log_e e^x + 2\log_e e^y = 4


🔍 Step 1: Solve Equation 1

log10(xy)=1xy=101=10\log_{10}(x - y) = 1 \Rightarrow x - y = 10^1 = 10

So:

x=y+10(Equation A)x = y + 10 \quad \text{(Equation A)}


🔍 Step 2: Simplify Equation 2

Recall:

  • logeex=x\log_e e^x = x
  • logeey=y\log_e e^y = y

So:

x+2y=4(Equation B)x + 2y = 4 \quad \text{(Equation B)}


🔁 Step 3: Substitute Equation A into B

Substitute x=y+10x = y + 10 into Equation B:

(y+10)+2y=43y+10=43y=6y=2(y + 10) + 2y = 4 \Rightarrow 3y + 10 = 4 \Rightarrow 3y = -6 \Rightarrow y = -2

Then:

x=y+10=2+10=8x = y + 10 = -2 + 10 = 8


✅ Final Answer:

x=8,y=2


(d) Find domain, range, and inverse (if exists):
(i) g(x)=4x+36x4g(x) = \frac{4x+3}{6x-4}
(ii) g(x)=3x5g(x) = \sqrt{3x-5}

Answer:
(i)

  • Domain: Denominator 0\neq 0, so 6x40    x236x - 4 \neq 0 \implies x \neq \frac{2}{3}. Domain: R{23}\mathbb{R} \setminus \{\frac{2}{3}\}.
  • Range: Solve for xx: y=4x+36x4    y(6x4)=4x+3  

  6xy4y=4x+3  

  6xy4x=4y+3  

  x(6y4)=4y+3  

  x=4y+36y4 y = \frac{4x+3}{6x-4} \implies y(6x-4) = 4x+3 \implies 6xy - 4y = 4x + 3 \implies 6xy - 4x = 4y + 3 \implies x(6y - 4) = 4y + 3 \implies x = \frac{4y+3}{6y-4}.
Inverse exists when denominator 0\neq 0, so range is R{23}\mathbb{R} \setminus \{\frac{2}{3}\}.

  • Inverse: g1(x)=4x+36x4g^{-1}(x) = \frac{4x+3}{6x-4} (same as original, but confirm with domain).
    Note: Function is its own inverse if g(g(x))=xg(g(x)) = x.

OR LETS DO THIS ONLY FOR LAZY STUDENTS LIKE YOU 😂🤣😆😹😄😜

g(x)=4x+36x4g(x) = \frac{4x + 3}{6x - 4}


🧭 Domain

The domain excludes values that make the denominator zero.

  • Set denominator to zero:
    6x4=0x=236x - 4 = 0 \Rightarrow x = \frac{2}{3}

Domain:

xR, x23\boxed{x \in \mathbb{R},\ x \ne \frac{2}{3}}


📈 Range

To find the range, consider the horizontal asymptote and behavior of the function.

  • As x±x \to \pm\infty, the leading terms dominate: g(x)4x6x=23g(x) \approx \frac{4x}{6x} = \frac{2}{3}
  • So, horizontal asymptote: y=23y = \frac{2}{3}

To confirm that y=23y = \frac{2}{3} is not in the range, solve:

4x+36x4=233(4x+3)=2(6x4)12x+9=12x89=8(False)\frac{4x + 3}{6x - 4} = \frac{2}{3} \Rightarrow 3(4x + 3) = 2(6x - 4) \Rightarrow 12x + 9 = 12x - 8 \Rightarrow 9 = -8 \quad \text{(False)}

Range:

yR, y23\boxed{y \in \mathbb{R},\ y \ne \frac{2}{3}}


🔄 Inverse Function

Let y=4x+36x4y = \frac{4x + 3}{6x - 4}. Solve for xx:

y(6x4)=4x+36xy4y=4x+36xy4x=4y+3x(6y4)=4y+3x=4y+36y4y(6x - 4) = 4x + 3 \Rightarrow 6xy - 4y = 4x + 3 \Rightarrow 6xy - 4x = 4y + 3 \Rightarrow x(6y - 4) = 4y + 3 \Rightarrow x = \frac{4y + 3}{6y - 4}

Inverse:

g1(x)=4x+36x4g^{-1}(x) = \boxed{\frac{4x + 3}{6x - 4}}

Interestingly, the inverse is identical to the original function. So:

g(x) is self-inverse
That means:

g(g(x))=x



(ii)

  • Domain: 3x50  
  •   x533x - 5 \geq 0 \implies x \geq \frac{5}{3}. Domain: [53,)\left[\frac{5}{3}, \infty\right).
  • Range: 0\sqrt{\cdot} \geq 0, so range: [0,)[0, \infty).

Inverse: Solve y=3x5  

  y2=3x5  

  3x=y2+5  

  x=y2+53y = \sqrt{3x-5} \implies y^2 = 3x - 5 \implies 3x = y^2 + 5 \implies x = \frac{y^2 + 5}{3}.

Thus, g1(x)=x2+53g^{-1}(x) = \frac{x^2 + 5}{3}, domain x0x \geq 0.


(e) Integrate:
(i) 13(2x+6)dx\int_{1}^{3} (2x + 6) \, dx
(ii) 0exdx\int_{0}^{\infty} e^{-x} \, dx

Answer:
(i)

(2x+6)dx=x2+6x+C\int (2x + 6) \, dx = x^2 + 6x + C

Evaluate:

[x2+6x]13=(9+18)(1+6)=277=20\left[ x^2 + 6x \right]_{1}^{3} = (9 + 18) - (1 + 6) = 27 - 7 = \boxed{20}

(ii) Improper integral:

0exdx=limb0bexdx=limb[ex]0b=limb(eb(e0))=limb(eb+1)=0+1=1

OR WE DO THIS NIGERS

🧮 (i) Definite Integral:

13(2x+6)dx\int_{1}^{3} (2x + 6) \, dx

Step 1: Integrate the expression

(2x+6)dx=x2+6x+C\int (2x + 6) \, dx = x^2 + 6x + C

Step 2: Apply limits from 1 to 3

=[x2+6x]13=(32+63)(12+61)

=(9+18)(1+6)

=277

=20= \left[ x^2 + 6x \right]_1^3 = (3^2 + 6 \cdot 3) - (1^2 + 6 \cdot 1) = (9 + 18) - (1 + 6) = 27 - 7 = \boxed{20}


🧮 (ii) Improper Integral:

0exdx\int_{0}^{\infty} e^{-x} \, dx

This is a standard exponential decay integral.

Step 1: Integrate

exdx=ex+C\int e^{-x} \, dx = -e^{-x} + C

Step 2: Apply limits from 0 to ∞

=[ex]0=limb(eb)(e0)

=0(1)

=1= \left[ -e^{-x} \right]_0^\infty = \lim_{b \to \infty} (-e^{-b}) - (-e^{0}) = 0 - (-1) = \boxed{1}


✅ Final Answers:

Part Integral Expression Result
(i) 13(2x+6)dx\int_{1}^{3} (2x + 6) \, dx 20\boxed{20}
(ii) 0exdx\int_{0}^{\infty} e^{-x} \, dx 1\boxed{1}


\int_{0}^{\infty} e^{-x} \, dx = \lim_{b \to \infty} \int_{0}^{b} e^{-x} \, dx = \lim_{b \to \infty} \left[ -e^{-x} \right]_{0}^{b} = \lim_{b \to \infty} \left( -e^{-b} - (-e^{0}) \right) = \lim_{b \to \infty} ( -e^{-b} + 1 ) = 0 + 1 = \boxed{1}


Question Five

(a) State the first principle of differentiation.

Answer:
The derivative of f(x)f(x) is:

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}


(b) Prove the identities:
(i) 1+sinx1sinx=(secx+tanx)2\frac{1 + \sin x}{1 - \sin x} = (\sec x + \tan x)^2

(ii) sin2x(secxcscx)cosxtanx=tanx1\frac{\sin^2 x (\sec x - \csc x)}{\cos x \tan x} = \tan x - 1

Answer:
(i) Right-hand side:

(secx+tanx)2=(1cosx+sinxcosx)2=(1+sinxcosx)2=(1+sinx)2cos2x(\sec x + \tan x)^2 = \left( \frac{1}{\cos x} + \frac{\sin x}{\cos x} \right)^2 = \left( \frac{1 + \sin x}{\cos x} \right)^2 = \frac{(1 + \sin x)^2}{\cos^2 x}

Left-hand side:

1+sinx1sinx1+sinx1+sinx=(1+sinx)21sin2x=(1+sinx)2cos2x\frac{1 + \sin x}{1 - \sin x} \cdot \frac{1 + \sin x}{1 + \sin x} = \frac{(1 + \sin x)^2}{1 - \sin^2 x} = \frac{(1 + \sin x)^2}{\cos^2 x}

Thus, LHS = RHS.


(ii) Simplify left-hand side:

Numerator: sin2x(secxcscx)=sin2x(1cosx1sinx)

=sin2xsinxcosxsinxcosx

=sinxX(sinxcosx)/cosx

=sinxtanxsinx\text{Numerator: } \sin^2 x (\sec x - \csc x) = \sin^2 x \left( \frac{1}{\cos x} - \frac{1}{\sin x} \right) = \sin^2 x \cdot \frac{\sin x - \cos x}{\sin x \cos x} = \sin x \cdot (\sin x - \cos x) / \cos x = \sin x \tan x - \sin x

Better:

sin2x(secxcscx)cosxtanx=sin2x(1cosx1sinx)cosxXsinxcosx

=sin2x(sinxcosxsinxcosx)sinx

=sinx(sinxcosx)sinx

=sinxcosx\frac{\sin^2 x (\sec x - \csc x)}{\cos x \tan x} = \frac{\sin^2 x \left( \frac{1}{\cos x} - \frac{1}{\sin x} \right)}{\cos x \cdot \frac{\sin x}{\cos x}} = \frac{\sin^2 x \left( \frac{\sin x - \cos x}{\sin x \cos x} \right)}{\sin x} = \frac{\sin x (\sin x - \cos x)}{\sin x} = \sin x - \cos x

Mistake. Correct:
Denominator: cosxtanx=cosxXsinxcosx=sinx\cos x \tan x = \cos x \cdot \frac{\sin x}{\cos x} = \sin x.
Numerator: sin2x(1cosx1sinx)=sin2xXsinxcosxsinxcosx=sinxXsinxcosxcosx=sinx(tanx1)\sin^2 x \left( \frac{1}{\cos x} - \frac{1}{\sin x} \right) = \sin^2 x \cdot \frac{\sin x - \cos x}{\sin x \cos x} = \sin x \cdot \frac{\sin x - \cos x}{\cos x} = \sin x (\tan x - 1).
Thus,

sinx(tanx1)sinx=tanx1\frac{\sin x (\tan x - 1)}{\sin x} = \tan x - 1

Proved.


LETS ALSO USE THIS METHOD 

✅ (i) Prove:

1+sinx1sinx=(secx+tanx)2\frac{1 + \sin x}{1 - \sin x} = (\sec x + \tan x)^2

✏️ Step 1: Expand RHS

Recall:

  • secx=1cosx\sec x = \frac{1}{\cos x}
  • tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}

So:

(secx+tanx)2=(1+sinxcosx)2=(1+sinx)2cos2x(\sec x + \tan x)^2 = \left( \frac{1 + \sin x}{\cos x} \right)^2 = \frac{(1 + \sin x)^2}{\cos^2 x}

✏️ Step 2: Expand numerator

(1+sinx)2=1+2sinx+sin2x(1 + \sin x)^2 = 1 + 2\sin x + \sin^2 x

So RHS becomes:

1+2sinx+sin2xcos2x\frac{1 + 2\sin x + \sin^2 x}{\cos^2 x}


✏️ Step 3: Simplify LHS

Start with:

1+sinx1sinx\frac{1 + \sin x}{1 - \sin x}

Multiply numerator and denominator by 1+sinx1 + \sin x (rationalizing):

1+sinx1sinx1+sinx1+sinx=(1+sinx)21sin2x\frac{1 + \sin x}{1 - \sin x} \cdot \frac{1 + \sin x}{1 + \sin x} = \frac{(1 + \sin x)^2}{1 - \sin^2 x}

Recall:

  • 1sin2x=cos2x1 - \sin^2 x = \cos^2 x

So LHS becomes:

(1+sinx)2cos2x\frac{(1 + \sin x)^2}{\cos^2 x}

LHS = RHS, hence:

1+sinx1sinx=(secx+tanx)2\boxed{\frac{1 + \sin x}{1 - \sin x} = (\sec x + \tan x)^2}


✅ (ii) Prove:

sin2x(secxcscx)cosxtanx=tanx1\frac{\sin 2x (\sec x - \csc x)}{\cos x \tan x} = \tan x - 1

✏️ Step 1: Use identities

  • sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x
  • secx=1cosx\sec x = \frac{1}{\cos x}
  • cscx=1sinx\csc x = \frac{1}{\sin x}
  • tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}

Substitute into LHS:

2sinxcosx(1cosx1sinx)cosxsinxcosx\frac{2 \sin x \cos x \left( \frac{1}{\cos x} - \frac{1}{\sin x} \right)}{\cos x \cdot \frac{\sin x}{\cos x}}


✏️ Step 2: Simplify numerator

2sinxcosx(1cosx1sinx)=2sinxcosx(sinxcosxsinxcosx)=2(sinxcosx)2 \sin x \cos x \left( \frac{1}{\cos x} - \frac{1}{\sin x} \right) = 2 \sin x \cos x \left( \frac{\sin x - \cos x}{\sin x \cos x} \right) = 2(\sin x - \cos x)


✏️ Step 3: Simplify denominator

cosxsinxcosx=sinx\cos x \cdot \frac{\sin x}{\cos x} = \sin x


✏️ Step 4: Final simplification

2(sinxcosx)sinx=2(1cosxsinx)=2(1cotx)\frac{2(\sin x - \cos x)}{\sin x} = 2 \left(1 - \frac{\cos x}{\sin x} \right) = 2 \left(1 - \cot x \right)

But this does not match the RHS tanx1\tan x - 1 unless there's a typo in the original identity.


⚠️ Possible Issue:

The original expression:

sin2x(secxcscx)cosxtanx\frac{\sin 2x (\sec x - \csc x)}{\cos x \tan x}

simplifies to:

2(1cotx)2(1 - \cot x)

not tanx1\tan x - 1

So unless the RHS was meant to be 2(1cotx)2(1 - \cot x), the identity as written is not valid.


(c) Solve 8cos2x+2cosx1=08 \cos^2 x + 2 \cos x - 1 = 0 for 0x2π0 \leq x \leq 2\pi.

Answer:
Let u=cosxu = \cos x:

8u2+2u1=08u^2 + 2u - 1 = 0

Quadratic formula:

u=2±4+3216

=2±3616

=2±616u = \frac{ -2 \pm \sqrt{4 + 32} }{16} = \frac{ -2 \pm \sqrt{36} }{16} = \frac{ -2 \pm 6 }{16}

Solutions:

u=416=14,u=816=12u = \frac{4}{16} = \frac{1}{4}, \quad u = \frac{-8}{16} = -\frac{1}{2}

Thus,

cosx=14    x=cos1(0.25)1.318\cos x = \frac{1}{4} \implies x = \cos^{-1}(0.25) \approx 1.318 rad, and x=2π1.3184.965x = 2\pi - 1.318 \approx 4.965 rad.

cosx=12    x=2π3,4π3\cos x = -\frac{1}{2} \implies x = \frac{2\pi}{3}, \frac{4\pi}{3}.
All solutions:

x=2π3, 4π3, cos1(0.25), 2πcos1(0.25)\boxed{x = \frac{2\pi}{3},\ \frac{4\pi}{3},\ \cos^{-1}(0.25),\ 2\pi - \cos^{-1}(0.25)}

Exact: x=2π3,4π3,arccos(14),2πarccos(14)x = \frac{2\pi}{3}, \frac{4\pi}{3}, \arccos\left(\frac{1}{4}\right), 2\pi - \arccos\left(\frac{1}{4}\right).


OR LETS DO THIS GUYS

✅ Given:

8cos2x+2cosx1=0for0x2π8 \cos^2 x + 2 \cos x - 1 = 0 \quad \text{for} \quad 0 \leq x \leq 2\pi

Let:

u=cosxu = \cos x

Then the equation becomes:

8u2+2u1=08u^2 + 2u - 1 = 0


✏️ Step 1: Solve the quadratic

Use the quadratic formula:

u=2±(2)24(8)(1)2(8)

=2±4+3216

=2±3616u = \frac{-2 \pm \sqrt{(2)^2 - 4(8)(-1)}}{2(8)} = \frac{-2 \pm \sqrt{4 + 32}}{16} = \frac{-2 \pm \sqrt{36}}{16}

u=2±616u = \frac{-2 \pm 6}{16}

So:

  • u=416=14u = \frac{4}{16} = \frac{1}{4}
  • u=816=12u = \frac{-8}{16} = -\frac{1}{2}

✏️ Step 2: Solve for xx

Case 1: cosx=14\cos x = \frac{1}{4}

This occurs in Quadrants I and IV:

x=cos1(14)1.3181(radians)

x = \cos^{-1} \left( \frac{1}{4} \right) \approx 1.3181 \quad \text{(radians)} x=2π1.31814.9651x = 2\pi - 1.3181 \approx 4.9651

Case 2: cosx=12\cos x = -\frac{1}{2}

This occurs in Quadrants II and III:

x=cos1(12)=2π32.0944

x = \cos^{-1} \left( -\frac{1}{2} \right) = \frac{2\pi}{3} \approx 2.0944 x=4π34.1888x = \frac{4\pi}{3} \approx 4.1888


✅ Final Answer:

x1.3181,2.0944,4.1888,4.9651(in radians, within [0,2π])


(d) Let A={1,2,3,4}A = \{1, 2, 3, 4\}, f={(1,4),(2,1),(3,3),(4,2)}f = \{(1,4), (2,1), (3,3), (4,2)\}, g={(1,3),(2,1),(3,2),(4,4)}g = \{(1,3), (2,1), (3,2), (4,4)\}. Find:
(i) fgf \circ g
(ii) gfg \circ f

Answer:
Composition: (fg)(x)=f(g(x))(f \circ g)(x) = f(g(x)).
(i) fgf \circ g:

  • g(1)=3f(3)=3g(1)=3 \to f(3)=3
  • g(2)=1f(1)=4g(2)=1 \to f(1)=4
  • g(3)=2f(2)=1g(3)=2 \to f(2)=1
  • g(4)=4f(4)=2g(4)=4 \to f(4)=2
    So, fg={(1,3),(2,4),(3,1),(4,2)}f \circ g = \{(1,3), (2,4), (3,1), (4,2)\}.

(ii) gfg \circ f:

  • f(1)=4g(4)=4f(1)=4 \to g(4)=4
  • f(2)=1g(1)=3f(2)=1 \to g(1)=3
  • f(3)=3g(3)=2f(3)=3 \to g(3)=2
  • f(4)=2g(2)=1f(4)=2 \to g(2)=1
    So, gf={(1,4),(2,3),(3,2),(4,1)}g \circ f = \{(1,4), (2,3), (3,2), (4,1)\}.

(e) Integrate:
(i) cosxesinxdx\int \cos x \cdot e^{\sin x} \, dx
(ii) xexdx\int x e^x \, dx

Answer:
(i) Substitution: Let u=sinxu = \sin x, du=cosxdxdu = \cos x \, dx.

cosxesinxdx=eudu=eu+C=esinx+C\int \cos x \cdot e^{\sin x} \, dx = \int e^u \, du = e^u + C = \boxed{e^{\sin x} + C}

(ii) Integration by parts: udv=uvvdu\int u \, dv = uv - \int v \, du.
Let u=xu = x, dv=exdxdv = e^x dx     du=dx\implies du = dx, v=exv = e^x.

xexdx=xexexdx=xexex+C=ex(x1)+C

OR WE DO THIS WAY

✅ (i) cosxesinxdx\int \cos x \cdot e^{\sin x} \, dx

Let’s use substitution:

Let:

u=sinxdudx=cosxdu=cosxdxu = \sin x \quad \Rightarrow \quad \frac{du}{dx} = \cos x \quad \Rightarrow \quad du = \cos x \, dx

So the integral becomes:

esinxcosxdx=eudu=eu+C=esinx+C\int e^{\sin x} \cdot \cos x \, dx = \int e^u \, du = e^u + C = e^{\sin x} + C

Answer:

cosxesinxdx=esinx+C\boxed{\int \cos x \cdot e^{\sin x} \, dx = e^{\sin x} + C}


✅ (ii) xexdx\int x e^x \, dx

Use integration by parts:

Let:

  • u=xdu=dxu = x \Rightarrow du = dx
  • dv=exdxv=exdv = e^x dx \Rightarrow v = e^x

Apply the formula:

udv=uvvdu\int u \, dv = uv - \int v \, du

So:

xexdx=xexexdx=xexex+C\int x e^x \, dx = x e^x - \int e^x \, dx = x e^x - e^x + C

Answer:

xexdx=(x1)ex+C\boxed{\int x e^x \, dx = (x - 1)e^x + C}

\int x e^x \, dx = x e^x - \int e^x \, dx = x e^x - e^x + C = \boxed{e^x (x - 1) + C}

@Dr. Microbiota


END OF SOLUTIONS