INTRODUCTION TO MATHEMATICAL METHODS TEST TWO JAN INTAKE 2024

DATE : 25th APRIL, 2024


QUESTION ONE

(a) Express the following as partial fractions

x8(x+1)(x2)[3]

ii.

\frac{x-8}{(x+1)(x-2)} \quad [3] x33(x+1)(x2)[5]\frac{x^3-3}{(x+1)(x-2)} \quad [5]

i) Solution for x8(x+1)(x2)\frac{x-8}{(x+1)(x-2)}:


To decompose into partial fractions, set:

x8(x+1)(x2)=Ax+1+Bx2\frac{x-8}{(x+1)(x-2)} = \frac{A}{x+1} + \frac{B}{x-2}

Multiply both sides by (x+1)(x2)(x+1)(x-2):

x8=A(x2)+B(x+1)x - 8 = A(x - 2) + B(x + 1)

Expand and collect like terms:

x8=(A+B)x+(2A+B)x - 8 = (A + B)x + (-2A + B)

Equate coefficients:

  • For xx: A+B=1A + B = 1
  • Constant: 2A+B=8-2A + B = -8
    Solve the system:
    Subtract the first equation from the second:

(2A+B)(A+B)=81    3A=9    A=3(-2A + B) - (A + B) = -8 - 1 \implies -3A = -9 \implies A = 3

Substitute A=3A = 3 into A+B=1A + B = 1:

3+B=1    B=23 + B = 1 \implies B = -2

Thus:

x8(x+1)(x2)=3x+12x2\frac{x-8}{(x+1)(x-2)} = \frac{3}{x+1} - \frac{2}{x-2}

ii). Solution for x33(x+1)(x2)\frac{x^3-3}{(x+1)(x-2)}:
The numerator degree (3) is greater than the denominator degree (2), so perform polynomial division first.
Denominator: (x+1)(x2)=x2x2(x+1)(x-2) = x^2 - x - 2.
Divide x3+0x2+0x3x^3 + 0x^2 + 0x - 3 by x2x2x^2 - x - 2:

  • Divide leading terms: x3x2=x\frac{x^3}{x^2} = x.
  • Multiply: x(x2x2)=x3x22xx \cdot (x^2 - x - 2) = x^3 - x^2 - 2x.
  • Subtract: (x3+0x2+0x3)(x3x22x)=x2+2x3(x^3 + 0x^2 + 0x - 3) - (x^3 - x^2 - 2x) = x^2 + 2x - 3.
  • Divide: x2x2=1\frac{x^2}{x^2} = 1.
  • Multiply: 1(x2x2)=x2x21 \cdot (x^2 - x - 2) = x^2 - x - 2.
  • Subtract: (x2+2x3)(x2x2)=3x1(x^2 + 2x - 3) - (x^2 - x - 2) = 3x - 1.
    So:

x33(x+1)(x2)=x+1+3x1x2x2

=x+1+3x1(x+1)(x2)

\frac{x^3-3}{(x+1)(x-2)} = x + 1 + \frac{3x-1}{x^2 - x - 2} = x + 1 + \frac{3x-1}{(x+1)(x-2)}

Now decompose 3x1(x+1)(x2)\frac{3x-1}{(x+1)(x-2)}:
Set:

3x1(x+1)(x2)=Cx+1+Dx2\frac{3x-1}{(x+1)(x-2)} = \frac{C}{x+1} + \frac{D}{x-2}

Multiply both sides by (x+1)(x2)(x+1)(x-2):

3x1=C(x2)+D(x+1)3x - 1 = C(x - 2) + D(x + 1)

Solve for CC and DD by substituting convenient values:

  • Let x=1x = -1: 3(1)1=C(12)    4=3C    C=433(-1) - 1 = C(-1 - 2) \implies -4 = -3C \implies C = \frac{4}{3}.
  • Let x=2x = 2: 3(2)1=D(2+1)    5=3D    D=533(2) - 1 = D(2 + 1) \implies 5 = 3D \implies D = \frac{5}{3}.
    Thus:

3x1(x+1)(x2)=4/3x+1+5/3x2\frac{3x-1}{(x+1)(x-2)} = \frac{4/3}{x+1} + \frac{5/3}{x-2}

Combine:

x33(x+1)(x2)=x+1+43(x+1)+53(x2)\frac{x^3-3}{(x+1)(x-2)} = x + 1 + \frac{4}{3(x+1)} + \frac{5}{3(x-2)}


(b) Given that f(x)=x22x5f(x) = -x^2 - 2x - 5 quadratic function.
Complete the square of quadratic functions.
Hence sketch the graph of the function, showing clearly the y-intercepts, turning                                                               point and line of symmetry. [3]+[5][3] + [5]

Solution:
Complete the square:

f(x)=x22x5

=(x2+2x)5f(x) = -x^2 - 2x - 5 = -(x^2 + 2x) - 5

Add and subtract 11 inside the parentheses:

x2+2x=(x2+2x+1)1=(x+1)21x^2 + 2x = (x^2 + 2x + 1) - 1 = (x+1)^2 - 1

So:

f(x)=[(x+1)21]5

=(x+1)2+15

=(x+1)24f(x) = -[(x+1)^2 - 1] - 5 = -(x+1)^2 + 1 - 5 = -(x+1)^2 - 4

Thus, f(x)=(x+1)24f(x) = -(x+1)^2 - 4.

  • Y-intercept: Set x=0x = 0: f(0)=005=5(Point: (0,5))f(0) = -0 - 0 - 5 = -5 \quad \text{(Point: } (0, -5))
  • X-intercepts: Set f(x)=0f(x) = 0: x22x5=0    x2+2x+5=0-x^2 - 2x - 5 = 0 \implies x^2 + 2x + 5 = 0 Discriminant: d=224(1)(5)=420=16<0d = 2^2 - 4(1)(5) = 4 - 20 = -16 < 0, no real roots. So no x-intercepts.
  • Turning point (vertex): From f(x)=(x+1)24f(x) = -(x+1)^2 - 4, vertex is at (1,4)(-1, -4).
  • Line of symmetry: x=1x = -1.
  • Shape: Leading coefficient is negative, so parabola opens downwards.

Graph Sketch Description:

  • Vertex at (1,4)(-1, -4).
  • Y-intercept at (0,5)(0, -5).
  • No x-intercepts.
  • Symmetry about x=1x = -1.
  • As x±x \to \pm \infty, f(x)f(x) \to -\infty.
  • Passes through points like (2,5)(-2, -5), (1,8)(1, -8), etc. (using equation).
    Visual: Opens downward, vertex at (1,4)(-1, -4), y-axis crossed at (0,5)(0, -5),                                                           symmetric about x=1x = -1, no x-axis crossings.


(c) Given that the roots of the equation 2x2+10x6=02x^2 + 10x - 6 = 0 are α\alpha and β\beta.
Find an equation whose roots are α2+2\alpha^2 + 2 and β2+2\beta^2 + 2.
Hence determine the nature of its roots. [4]+[5][4] + [5]

Solution:
First, for 2x2+10x6=02x^2 + 10x - 6 = 0, divide by 2: x2+5x3=0x^2 + 5x - 3 = 0.
Sum of roots: α+β=ba=5\alpha + \beta = -\frac{b}{a} = -5.
Product of roots: αβ=ca=3\alpha\beta = \frac{c}{a} = -3.

New roots: p=α2+2p = \alpha^2 + 2, q=β2+2q = \beta^2 + 2.
Sum p+q=(α2+2)+(β2+2)=α2+β2+4p + q = (\alpha^2 + 2) + (\beta^2 + 2) = \alpha^2 + \beta^2 + 4.

α2+β2=(α+β)22αβ

=(5)22(3)

=25+6

=31\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = (-5)^2 - 2(-3) = 25 + 6 = 31

So:

p+q=31+4=35p + q = 31 + 4 = 35

Product pq=(α2+2)(β2+2)=α2β2+2(α2+β2)+4

=(αβ)2+2(31)+4

=(3)2+62+4

=9+62+4

=75pq = (\alpha^2 + 2)(\beta^2 + 2) = \alpha^2\beta^2 + 2(\alpha^2 + \beta^2) + 4 = (\alpha\beta)^2 + 2(31) + 4 = (-3)^2 + 62 + 4 = 9 + 62 + 4 = 75.

The quadratic equation with roots pp and qq is:

x2(p+q)x+pq=0    x235x+75=0x^2 - (p+q)x + pq = 0 \implies x^2 - 35x + 75 = 0

Nature of roots: Discriminant d=b24ac=(35)24(1)(75)=1225300=925d = b^2 - 4ac = (-35)^2 - 4(1)(75) = 1225 - 300 = 925.

  • d>0d > 0, so two distinct real roots.
  • d=925d = 925 is not a perfect square (302=90030^2 = 900, 312=96131^2 = 961), so roots are irrational.

Thus, roots are real, distinct, and irrational.


QUESTION TWO

(a) State the following
(i) The factor theorem
(ii) The polynomial of degree 4 and give your own example
[2]+[2][2] + [2]

Solution:
(i) Factor Theorem: If f(c)=0f(c) = 0 for a polynomial f(x)f(x), then (xc)(x - c) is a factor of f(x)f(x).                                                                      Conversely, if (xc)(x - c) is a factor, then f(c)=0f(c) = 0.
(ii) Polynomial of Degree 4: A polynomial where the highest power of xx is 4.
Example: f(x)=x4+2x3x2+4x3f(x) = x^4 + 2x^3 - x^2 + 4x - 3.


(b) Given that f(x)=x4+5x33x213x+10f(x) = x^4 + 5x^3 - 3x^2 - 13x + 10 is a polynomial of degree four.
(i) Factorise completely for which f(x)f(x).
(ii) Find all solutions for which f(x)=0f(x) = 0.
(iii) Sketch the graph of f(x)f(x).
[5]+[5][5] + [5]

Solution:
(i) Factorization:
Possible rational roots: ±1,2,5,10\pm 1, 2, 5, 10.

  • Test x=1x = 1: f(1)=1+5313+10=0f(1) = 1 + 5 - 3 - 13 + 10 = 0, so (x1)(x - 1) is a factor.
    Synthetic division by x1x - 1 (root 1):

1153131016310163100\begin{array}{r|rrrrr} 1 & 1 & 5 & -3 & -13 & 10 \\ & & 1 & 6 & 3 & -10 \\ \hline & 1 & 6 & 3 & -10 & 0 \\ \end{array}

Quotient: x3+6x2+3x10x^3 + 6x^2 + 3x - 10.

  • Test x=1x = 1 again on quotient: 1+6+310=01 + 6 + 3 - 10 = 0, so (x1)(x - 1) is a factor again.
    Synthetic division by x1x - 1 (root 1):

116310171017100\begin{array}{r|rrrr} 1 & 1 & 6 & 3 & -10 \\ & & 1 & 7 & 10 \\ \hline & 1 & 7 & 10 & 0 \\ \end{array}

Quotient: x2+7x+10x^2 + 7x + 10.
Factor: x2+7x+10=(x+2)(x+5)x^2 + 7x + 10 = (x + 2)(x + 5).
Thus, complete factorization:

f(x)=(x1)2(x+2)(x+5)f(x) = (x - 1)^2 (x + 2)(x + 5)

(ii) Solutions to f(x)=0f(x) = 0:
Set each factor to zero:

  • (x1)2=0    x=1(x - 1)^2 = 0 \implies x = 1 (multiplicity 2)
  • x+2=0    x=2x + 2 = 0 \implies x = -2
  • x+5=0    x=5x + 5 = 0 \implies x = -5
    Solutions: x=5,2,1x = -5, -2, 1 (with x=1x = 1 having multiplicity 2).

(iii) Graph Sketch Description:

  • Roots at x=5,2,1x = -5, -2, 1.
  • Y-intercept: f(0)=10f(0) = 10 (point (0,10)(0, 10)).
  • Behavior: Degree 4, positive leading coefficient, so as x±x \to \pm \infty, f(x)f(x) \to \infty.
  • Multiplicity: At x=1x = 1 (even multiplicity), graph touches x-axis and turns. At x=5x = -5                                                            and x=2x = -2 (odd multiplicity), graph crosses x-axis.
  • Sign analysis:
    • For x<5x < -5, e.g., x=6x = -6, f(6)>0f(-6) > 0.
    • Between 5-5 and 2-2, e.g., x=3x = -3, f(3)=(4)2(1)(2)=16x (1)x 2=32<0f(-3) = (-4)^2(-1)(2) = 16 \cdot (-1) \cdot 2 = -32 < 0.
    • Between 2-2 and 11, e.g., x=0x = 0, f(0)=10>0f(0) = 10 > 0.
    • For x>1x > 1, e.g., x=2x = 2, f(2)=(1)2(4)(7)>0f(2) = (1)^2(4)(7) > 0.
  • Turning points: Cubic-like behavior with turns near roots.
    Visual: Starts in quadrant II, crosses x-axis at x=5x = -5 (downward), crosses again                                                                        at x=2x = -2 (upward), touches at x=1x = 1 (bounces up), ends in quadrant I. Y-intercept at (0,10)(0, 10).

                                           


(c) Find the quotient and remainder of the polynomial f(x)=6x35x23x+2f(x) = 6x^3 - 5x^2 - 3x + 2 when it                                                               is divided by x+2x + 2 by using synthetic division.
[4]+[4] marks[4] + [4]

Solution:
Divisor x+2=0    x=2x + 2 = 0 \implies x = -2.
Synthetic division with root 2-2:

265321234626173160\begin{array}{r|rrrr} -2 & 6 & -5 & -3 & 2 \\ & & -12 & 34 & -62 \\ \hline & 6 & -17 & 31 & -60 \\ \end{array}

Interpret: Coefficients of quotient are 6,17,316, -17, 31, so quotient is 6x217x+316x^2 - 17x + 31.
Remainder is 60-60.
Thus, quotient: 6x217x+316x^2 - 17x + 31, remainder: 60-60.


QUESTION THREE

(a) Sketch the following logarithmic and exponential graphs on the same diagram.
f(x)=(13)x+3andf(x)=3+log3xf(x) = \left( \frac{1}{3} \right)^x + 3 \quad \text{and} \quad f(x) = 3 + \log_3 x
(Note: The second function should be labeled differently; assume g(x)=(13)x+3g(x) = \left( \frac{1}{3} \right)^x + 3 and h(x)=3+log3xh(x) = 3 + \log_3 x for clarity.)

Solution:
Key features for g(x)=(13)x+3g(x) = \left( \frac{1}{3} \right)^x + 3:

  • Exponential decay (base < 1), shifted up 3 units.
  • As xx \to \infty, g(x)3+g(x) \to 3^+ (horizontal asymptote: y=3y = 3).
  • As xx \to -\infty, g(x)g(x) \to \infty.
  • Y-intercept: x=0x = 0, g(0)=1+3=4g(0) = 1 + 3 = 4 (point (0,4)(0, 4)).
  • Point: x=1x = 1, g(1)=13+33.333g(1) = \frac{1}{3} + 3 \approx 3.333.

Key features for h(x)=3+log3xh(x) = 3 + \log_3 x:

  • Logarithmic function, domain x>0x > 0.
  • Vertical asymptote: x=0x = 0 (as x0+x \to 0^+, h(x)h(x) \to -\infty).
  • As xx \to \infty, h(x)h(x) \to \infty.
  • X-intercept: Set h(x)=0h(x) = 0: 3+log3x=0    log3x=3    x=33=1273 + \log_3 x = 0 \implies \log_3 x = -3 \implies x = 3^{-3} = \frac{1}{27} (point (127,0)(\frac{1}{27}, 0)).
  • Point: x=1x = 1, h(1)=3+0=3h(1) = 3 + 0 = 3.
  • Point: x=3x = 3, h(3)=3+log33=3+1=4h(3) = 3 + \log_3 3 = 3 + 1 = 4.

Graph Sketch Description:

  • Same diagram:
    • g(x)g(x): Starts high left, passes through (0,4)(0,4), decays to y=3y=3 as xx increases.
    • h(x)h(x): Vertical asymptote at x=0x=0, passes through (127,0)(\frac{1}{27}, 0), (1,3)(1,3), (3,4)(3,4).
  • Intersections: Solve g(x)=h(x)g(x) = h(x): (13)x+3=3+log3x    (13)x=log3x\left( \frac{1}{3} \right)^x + 3 = 3 + \log_3 x \implies \left( \frac{1}{3} \right)^x = \log_3 x.
    • At x=1x=1, g(1)3.333>h(1)=3g(1) \approx 3.333 > h(1) = 3.
    • At x=3x=3, g(3)3.037<h(3)=4g(3) \approx 3.037 < h(3) = 4.
    • As x0+x \to 0^+, g(x)g(x) \to \infty, h(x)h(x) \to -\infty, so they intersect once in (0,1)(0,1).
    • They intersect again in (1,3)(1,3) (e.g., near x1.5x \approx 1.5).
  • Sketch shows g(x)g(x) decreasing from left, h(x)h(x) increasing slowly from right of y-axis, intersecting twice.


(b) Solve the following without using calculator or log table.

d:log2(5x+1)=2log4(2x8)d: \quad \log_2 (5x + 1) = 2 \log_4 (2x - 8) y:2sin2x+cosx1=0y: \quad 2 \sin^2 x + \cos x - 1 = 0

Solution for dd:
Simplify right side: 2log4(2x8)2 \log_4 (2x - 8).
Since 4=224 = 2^2, log4z=log2zlog24=log2z2\log_4 z = \frac{\log_2 z}{\log_2 4} = \frac{\log_2 z}{2}.
So:

2log4(2x8)=2log2(2x8)2=log2(2x8)2 \log_4 (2x - 8) = 2 \cdot \frac{\log_2 (2x - 8)}{2} = \log_2 (2x - 8)

Equation:

log2(5x+1)=log2(2x8)\log_2 (5x + 1) = \log_2 (2x - 8)

Arguments equal (same base, one-to-one):

5x+1=2x8    3x=9    x=35x + 1 = 2x - 8 \implies 3x = -9 \implies x = -3

Check domain:

  • For log2(5x+1)\log_2 (5x + 1): 5x+1>0    x>155x + 1 > 0 \implies x > -\frac{1}{5}.
  • For log2(2x8)\log_2 (2x - 8): 2x8>0    x>42x - 8 > 0 \implies x > 4.
    x=3x = -3 satisfies neither (5(3)+1=14<05(-3)+1 = -14 < 0, 2(3)8=14<02(-3)-8 = -14 < 0), so not in domain.
    Thus, no solution.

Solution for yy:

2sin2x+cosx1=02 \sin^2 x + \cos x - 1 = 0

Use identity: sin2x=1cos2x\sin^2 x = 1 - \cos^2 x.
Substitute:

2(1cos2x)+cosx1=0  

  22cos2x+cosx1=0  

  2cos2x+cosx+1=02(1 - \cos^2 x) + \cos x - 1 = 0 \implies 2 - 2\cos^2 x + \cos x - 1 = 0 \implies -2\cos^2 x + \cos x + 1 = 0

Multiply by 1-1:

2cos2xcosx1=02\cos^2 x - \cos x - 1 = 0

Let u=cosxu = \cos x:

2u2u1=02u^2 - u - 1 = 0

Discriminant: d=(1)24(2)(1)=1+8=9d = (-1)^2 - 4(2)(-1) = 1 + 8 = 9.
Roots:

u=1±94=1±34    u=1oru=12u = \frac{1 \pm \sqrt{9}}{4} = \frac{1 \pm 3}{4} \implies u = 1 \quad \text{or} \quad u = -\frac{1}{2}

So cosx=1\cos x = 1 or cosx=12\cos x = -\frac{1}{2}.

  • cosx=1    x=2kπ,kZ\cos x = 1 \implies x = 2k\pi, k \in \mathbb{Z}.
  • cosx=12    x=±2π3+2kπ,kZ\cos x = -\frac{1}{2} \implies x = \pm \frac{2\pi}{3} + 2k\pi, k \in \mathbb{Z}.

Solutions: x=2kπ,x=2π3+2kπ,x=2π3+2kπx = 2k\pi, \quad x = \frac{2\pi}{3} + 2k\pi, \quad x = -\frac{2\pi}{3} + 2k\pi for integer kk.


(c) Prove the following trigonometric identities

11+sinx+11sinx=2sec2x\frac{1}{1 + \sin x} + \frac{1}{1 - \sin x} = 2 \sec^2 x

Solution:
Left side:

11+sinx+11sinx

=(1sinx)+(1+sinx)(1+sinx)(1sinx)

=1sinx+1+sinx1sin2x

=2cos2x\frac{1}{1 + \sin x} + \frac{1}{1 - \sin x} = \frac{(1 - \sin x) + (1 + \sin x)}{(1 + \sin x)(1 - \sin x)} = \frac{1 - \sin x + 1 + \sin x}{1 - \sin^2 x} = \frac{2}{\cos^2 x}

Since 1sin2x=cos2x1 - \sin^2 x = \cos^2 x.
Now, 2cos2x=2sec2x\frac{2}{\cos^2 x} = 2 \sec^2 x, as secx=1cosx\sec x = \frac{1}{\cos x}.
Thus, left side equals right side.


(d) Find the value of the following trigonometric ratios without using a calculator.

sec(7π6)\sec \left( \frac{7\pi}{6} \right)

Solution:

secθ=1cosθ\sec \theta = \frac{1}{\cos \theta}

7π6\frac{7\pi}{6} radians = 210 degrees (third quadrant, reference angle π6\frac{\pi}{6}).
In third quadrant, cosine is negative:

cos(7π6)=cos(π6)

=32\cos \left( \frac{7\pi}{6} \right) = -\cos \left( \frac{\pi}{6} \right) = -\frac{\sqrt{3}}{2}

Thus:

sec(7π6)=132

=23

=233\sec \left( \frac{7\pi}{6} \right) = \frac{1}{-\frac{\sqrt{3}}{2}} = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}


(e) Sketch the following function by determining the phase shift, vertical shift, period and amplitude. Sketch within the range given to the right of each function

f(x)=32cos2x[π4,3π]f(x) = 3 - 2 \cos 2x \quad \left[-\frac{\pi}{4}, 3\pi\right]

Solution:
Rewrite: f(x)=2cos(2x)+3f(x) = -2 \cos(2x) + 3.
Standard form: Acos(Bx+C)+DA \cos(Bx + C) + D.
Here, A=2A = -2, B=2B = 2, C=0C = 0, D=3D = 3.

  • Amplitude: A=2=2|A| = |-2| = 2.
  • Period: 2πB=2π2=π\frac{2\pi}{|B|} = \frac{2\pi}{2} = \pi.
  • Phase shift: CB=0-\frac{C}{B} = 0 (no shift).
  • Vertical shift: D=3D = 3.

Key points (one period π\pi):

  • cos(2x)\cos(2x) cycles every π\pi.
  • When cos(2x)=1\cos(2x) = 1, f(x)=32(1)=1f(x) = 3 - 2(1) = 1.
  • When cos(2x)=1\cos(2x) = -1, f(x)=32(1)=5f(x) = 3 - 2(-1) = 5.
  • When cos(2x)=0\cos(2x) = 0, f(x)=3f(x) = 3.

Points in [π4,3π][-\frac{\pi}{4}, 3\pi]:

  • x=π4x = -\frac{\pi}{4}: 2x=π22x = -\frac{\pi}{2}, cos(π2)=0\cos(-\frac{\pi}{2}) = 0, f=32(0)=3f = 3 - 2(0) = 3.
  • x=0x = 0: 2x=02x = 0, cos(0)=1\cos(0) = 1, f=32(1)=1f = 3 - 2(1) = 1.
  • x=π4x = \frac{\pi}{4}: 2x=π22x = \frac{\pi}{2}, cos(π2)=0\cos(\frac{\pi}{2}) = 0, f=3f = 3.
  • x=π2x = \frac{\pi}{2}: 2x=π2x = \pi, cos(π)=1\cos(\pi) = -1, f=32(1)=5f = 3 - 2(-1) = 5.
  • x=3π4x = \frac{3\pi}{4}: 2x=3π22x = \frac{3\pi}{2}, cos(3π2)=0\cos(\frac{3\pi}{2}) = 0, f=3f = 3.
  • x=πx = \pi: 2x=2π2x = 2\pi, cos(2π)=1\cos(2\pi) = 1, f=1f = 1.
  • x=5π4x = \frac{5\pi}{4}: 2x=5π2=2π+π22x = \frac{5\pi}{2} = 2\pi + \frac{\pi}{2}, cos=0\cos = 0, f=3f = 3.
  • x=3π2x = \frac{3\pi}{2}: 2x=3π2x = 3\pi, cos(3π)=1\cos(3\pi) = -1, f=5f = 5.
  • x=7π4x = \frac{7\pi}{4}: 2x=7π2=3π+π22x = \frac{7\pi}{2} = 3\pi + \frac{\pi}{2}, cos=0\cos = 0, f=3f = 3.
  • x=2πx = 2\pi: 2x=4π2x = 4\pi, cos(4π)=1\cos(4\pi) = 1, f=1f = 1.
  • x=9π4x = \frac{9\pi}{4}: 2x=9π2=4π+π22x = \frac{9\pi}{2} = 4\pi + \frac{\pi}{2}, cos=0\cos = 0, f=3f = 3. (But 9π4>3π\frac{9\pi}{4} > 3\pi, so stop at 3π3\pi.)
  • x=3πx = 3\pi: 2x=6π2x = 6\pi, cos(6π)=1\cos(6\pi) = 1, f=1f = 1.

Graph Sketch Description:

  • Range: xx from π4-\frac{\pi}{4} to 3π3\pi.
  • Values oscillate between 1 and 5 with period π\pi.
  • Starts at (π4,3)(-\frac{\pi}{4}, 3), decreases to (0,1)(0,1), increases to (π2,5)(\frac{\pi}{2},5), decreases to (π,1)(\pi,1), and repeats.
  • At x=3πx=3\pi, ends at (3π,1)(3\pi,1).
  • Shape: Cosine wave reflected over midline (due to negative A),                                                                                                       vertically stretched by 2, shifted up 3. Midline y=3y=3.

📌 Graph Features Recap:

  • Amplitude: 2
  • Period: π\pi
  • Vertical Shift: Up 3 units
  • Midline: y=3y = 3
  • Phase Shift: None
  • Oscillation Range: Between 1 and 5

@Dr. Microbiota


END OF SOLUTIONS