INTRODUCTION TO MATHEMATICAL METHODS TEST TWO JULY INTAKE 2024

DATE : 30th OCTOBER, 2024


QUESTION ONE

A. The functions f(x)f(x) and g(x)g(x) are given by the following f(x)=x−5x+10f(x) = \frac{x-5}{x+10} and g(x)=2x+4g(x) = 2x + 4
I. Calculate the value of gof(2)gof(2)
Solution:

gof(2)=g(f(2))gof(2) = g(f(2))

First, compute f(2)f(2):

f(2)=2−52+10

=−312

=−14f(2) = \frac{2-5}{2+10} = \frac{-3}{12} = -\frac{1}{4}

Now, compute g(f(2))g(f(2)):

g(−14)=2(−14)+4

=−12+4

=72g\left(-\frac{1}{4}\right) = 2 \left(-\frac{1}{4}\right) + 4 = -\frac{1}{2} + 4 = \frac{7}{2}

Answer: 72\frac{7}{2}


II. Calculate the value of fof(x)−1fof(x)^{-1}
Solution:
The notation fof(x)−1fof(x)^{-1} is interpreted as the inverse of f∘ff \circ f, denoted as (f∘f)−1(x)(f \circ f)^{-1}(x).
First, compute f∘f(x)=f(f(x))f \circ f(x) = f(f(x)):

f(f(x))=f(x−5x+10)=x−5x+10−5x−5x+10+10

=x−5−5(x+10)x+10x−5+10(x+10)x+10

=x−5−5x−50x+10x−5+10x+100x+10

=−4x−55x+1011x+95x+10

=−4x−5511x+95f(f(x)) = f\left(\frac{x-5}{x+10}\right) = \frac{\frac{x-5}{x+10} - 5}{\frac{x-5}{x+10} + 10} = \frac{\frac{x-5 - 5(x+10)}{x+10}}{\frac{x-5 + 10(x+10)}{x+10}} = \frac{\frac{x-5-5x-50}{x+10}}{\frac{x-5+10x+100}{x+10}} = \frac{\frac{-4x-55}{x+10}}{\frac{11x+95}{x+10}} = \frac{-4x-55}{11x+95}

Now, find the inverse of y=−4x−5511x+95y = \frac{-4x-55}{11x+95}:

y=−4x−5511x+95y = \frac{-4x-55}{11x+95}

Solve for xx:

y(11x+95)=−4x−55

y(11x + 95) = -4x - 55 11xy+95y=−4x−55

11xy + 95y = -4x - 55 11xy+4x=−55−95y

11xy + 4x = -55 - 95y x(11y+4)=−55−95y

x(11y + 4) = -55 - 95y x=−55−95y11y+4x = \frac{-55 - 95y}{11y + 4}

Thus, the inverse function is:

(f∘f)−1(x)=−55−95x11x+4(f \circ f)^{-1}(x) = \frac{-55 - 95x}{11x + 4}

Answer: −55−95x11x+4\frac{-55 - 95x}{11x + 4}


B. Show whether the function f(x)=x4+x3f(x) = x^4 + x^3 is even, odd or neither.
Solution:
A function is even if f(−x)=f(x)f(-x) = f(x), and odd if f(−x)=−f(x)f(-x) = -f(x).
Compute f(−x)f(-x):

f(−x)=(−x)4+(−x)3=x4−x3f(-x) = (-x)^4 + (-x)^3 = x^4 - x^3

Compare to f(x)f(x) and −f(x)-f(x):

f(x)=x4+x3,−f(x)=−x4−x3f(x) = x^4 + x^3, \quad -f(x) = -x^4 - x^3

Since f(−x)=x4−x3≠f(x)f(-x) = x^4 - x^3 \neq f(x) and f(−x)=x4−x3≠−f(x)f(-x) = x^4 - x^3 \neq -f(x), the function is neither even nor odd.
Answer: Neither


C. Given the function f(x)=−4−2x−3f(x) = -4 - \sqrt{2x - 3}


I. Find the xx-intercept and yy-intercept if they exist.
Solution:

  • yy-intercept: Set x=0x = 0:

f(0)=−4−2(0)−3

=−4−−3f(0) = -4 - \sqrt{2(0) - 3} = -4 - \sqrt{-3}

The expression −3\sqrt{-3} is not real. Thus, no yy-intercept.

  • xx-intercept: Set f(x)=0f(x) = 0:

0=−4−2x−3  

⟹  2x−3=−40 = -4 - \sqrt{2x - 3} \implies \sqrt{2x - 3} = -4

A square root is non-negative, so 2x−3≥0\sqrt{2x - 3} \geq 0. The equation 2x−3=−4\sqrt{2x - 3} = -4                                                                                           has no real solution. Thus, no xx-intercept.
Answer: No xx-intercept or yy-intercept


II. Sketch the graph of f(x)f(x)
Solution:

  • Domain: 2x−3≥0  ⟹  x≥322x - 3 \geq 0 \implies x \geq \frac{3}{2}.
  • Behavior:
    • At x=32x = \frac{3}{2}, f(32)=−4−0=−4f\left(\frac{3}{2}\right) = -4 - \sqrt{0} = -4.
    • As xx increases, 2x−3\sqrt{2x - 3} increases, so −2x−3-\sqrt{2x - 3} decreases, and f(x)f(x) decreases.
    • As x→∞x \to \infty, f(x)→−∞f(x) \to -\infty.
  • Vertex: The function can be rewritten as:

y+4=−2x−3  

⟹  (y+4)2=2x−3  

⟹  x=12(y+4)2+32y + 4 = -\sqrt{2x - 3} \implies (y + 4)^2 = 2x - 3 \implies x = \frac{1}{2}(y + 4)^2 + \frac{3}{2}

This is a parabola opening right with vertex at (32,−4)\left(\frac{3}{2}, -4\right).
Graph Sketch:

  • Starts at (32,−4)\left(\frac{3}{2}, -4\right).
  • Decreases as xx increases.
  • Passes through points:
    • (32,−4)\left(\frac{3}{2}, -4\right)
    • (2,−4−1)=(2,−5)(2, -4 - \sqrt{1}) = (2, -5)
    • (6,−4−9)=(6,−7)(6, -4 - \sqrt{9}) = (6, -7)


D. Solve 2x2−12x+13=02x^2 - 12x + 13 = 0 using completing the square method.
Solution:

2x2−12x+13=02x^2 - 12x + 13 = 0

Divide by 2:

x2−6x+132=0x^2 - 6x + \frac{13}{2} = 0

Isolate the constant term:

x2−6x=−132x^2 - 6x = -\frac{13}{2}

Complete the square:

x2−6x+9=−132+9  

⟹  (x−3)2=−132+182

                                                                                                      ⟹  (x−3)2=52

=52Solve for xx:

x−3=±52

=±102

x - 3 = \pm \sqrt{\frac{5}{2}} = \pm \frac{\sqrt{10}}{2} x=3±102

=6±102x = 3 \pm \frac{\sqrt{10}}{2} = \frac{6 \pm \sqrt{10}}{2}

Answer: x=6±102x = \frac{6 \pm \sqrt{10}}{2}


E. Given the simultaneous equations 2x+y=12x + y = 1 and x2−4ky+5k=0x^2 - 4ky + 5k = 0 where kk is non-zero constant.
I. Show that x2+8kx+k=0x^2 + 8kx + k = 0
Solution:
From 2x+y=12x + y = 1, solve for yy:

y=1−2xy = 1 - 2x

Substitute into the second equation:

x2−4k(1−2x)+5k=0

x^2 - 4k(1 - 2x) + 5k = 0 x2−4k+8kx+5k=0

x^2 - 4k + 8kx + 5k = 0 x2+8kx+k=0x^2 + 8kx + k = 0

Answer: Shown as required.


II. Given that x2+8kx+k=0x^2 + 8kx + k = 0 has equal roots, find the value of kk.
Solution:
For equal roots, discriminant D=0D = 0:

D=(8k)2−4(1)(k)

=64k2−4kD = (8k)^2 - 4(1)(k) = 64k^2 - 4k

Set D=0D = 0:

64k2−4k=0  

⟹  4k(16k−1)=064k^2 - 4k = 0 \implies 4k(16k - 1) = 0 k=0ork=116k = 0 \quad \text{or} \quad k = \frac{1}{16}

Since kk is non-zero, k=116k = \frac{1}{16}.
Answer: k=116k = \frac{1}{16}


F. If the profit pp in the manufacture and sale of xx units of a product is given by p(x)=4x+3x−2x2p(x) = 4x + 3x - 2x^2
Note: Simplify to p(x)=7x−2x2p(x) = 7x - 2x^2.
I. Find the value of xx that yields the maximum profit.
Solution:
The function p(x)=−2x2+7xp(x) = -2x^2 + 7x is a downward-opening quadratic. Maximum at vertex:

x=−b2a

=−72(−2)

=74x = -\frac{b}{2a} = -\frac{7}{2(-2)} = \frac{7}{4}

Answer: x=74x = \frac{7}{4}

II. Find the maximum profit if each item is sold at K500.
Solution:
The selling price (K500) is irrelevant as the profit function is given. Substitute x=74x = \frac{7}{4}:

p(74)=7(74)−2(74)2

=494−2X4916

=494−498

=988−498

=498p\left(\frac{7}{4}\right) = 7\left(\frac{7}{4}\right) - 2\left(\frac{7}{4}\right)^2 = \frac{49}{4} - 2 \cdot \frac{49}{16} = \frac{49}{4} - \frac{49}{8} = \frac{98}{8} - \frac{49}{8} = \frac{49}{8}

Answer: Maximum profit = 498\frac{49}{8}


III. Sketch the graph of the function p(x)p(x)
Solution:

  • Shape: Parabola opening downward.
  • Vertex: (74,498)=(1.75,6.125)\left( \frac{7}{4}, \frac{49}{8} \right) = (1.75, 6.125).
  • xx-intercepts: Set p(x)=0p(x) = 0:

7x−2x2=0  

⟹  x(7−2x)=0  

⟹  x=0orx=72=3.57x - 2x^2 = 0 \implies x(7 - 2x) = 0 \implies x = 0 \quad \text{or} \quad x = \frac{7}{2} = 3.5

  • Points:
    • (0,0)(0, 0)
    • (3.5,0)(3.5, 0)
    • Vertex (1.75,6.125)(1.75, 6.125)
      Graph Sketch:

@Dr. Microbiota


END OF SOLUTIONS