INTRODUCTION TO MATHEMATICAL METHODS TEST ONE JULY INTAKE 2022

DATE : 9th March, 2022.

INSTRUCTIONS:

  • Indicate your Name, Computer number and Tutorial group on your answer paper
  • Answer all questions
  • Show your working to earn full marks
    TIME ALLOWED: 2 Hours

1. (a) Define the following:

(i) A function
A function ff from set AA to set BB is a rule that assigns to each element xAx \in A exactly one element yBy \in B, denoted y=f(x)y = f(x).

(ii) A one-to-one function
A function f:ABf: A \to B is one-to-one (injective) if for every x1,x2Ax_1, x_2 \in A, if f(x1)=f(x2)f(x_1) = f(x_2), then x1=x2x_1 = x_2.

(iii) Binary operation
A binary operation * on a set SS is a function :S×SS*: S \times S \to S that maps each ordered pair (a,b)S×S(a, b) \in S \times S to an element abSa * b \in S.


(b) Rationalize the denominator of the following:

(i) 52+5\frac{5}{2 + \sqrt{5}}
Solution:

52+5X2525

=5(25)(2)2(5)2

=105545

=10551

=10+55\frac{5}{2 + \sqrt{5}} \cdot \frac{2 - \sqrt{5}}{2 - \sqrt{5}} = \frac{5(2 - \sqrt{5})}{(2)^2 - (\sqrt{5})^2} = \frac{10 - 5\sqrt{5}}{4 - 5} = \frac{10 - 5\sqrt{5}}{-1} = -10 + 5\sqrt{5}

Final Answer: 55105\sqrt{5} - 10

(ii) 351+35\frac{3 - \sqrt{5}}{1 + 3\sqrt{5}}
Solution:

351+35X135135

=(35)(135)(1)2(35)2

=3X1+3X(35)+(5)X1+(5)X(35)145\frac{3 - \sqrt{5}}{1 + 3\sqrt{5}} \cdot \frac{1 - 3\sqrt{5}}{1 - 3\sqrt{5}} = \frac{(3 - \sqrt{5})(1 - 3\sqrt{5})}{(1)^2 - (3\sqrt{5})^2} = \frac{3 \cdot 1 + 3 \cdot (-3\sqrt{5}) + (-\sqrt{5}) \cdot 1 + (-\sqrt{5}) \cdot (-3\sqrt{5})}{1 - 45}

Numerator:
3955+15

=181053 - 9\sqrt{5} - \sqrt{5} + 15 = 18 - 10\sqrt{5}

Denominator:
145=441 - 45 = -44

1810544

=1051844=55922\frac{18 - 10\sqrt{5}}{-44} = \frac{10\sqrt{5} - 18}{44} = \frac{5\sqrt{5} - 9}{22}

Final Answer: 55922\frac{5\sqrt{5} - 9}{22}


(c) Express the following in the form ab\frac{a}{b}, where aa and bb are integers and b0b \neq 0.

(i) 1.6661.666\ldots
Solution:
Let x=1.666x = 1.666\ldots.
Then 10x=16.66610x = 16.666\ldots.
Subtract:

10xx=16.666 −1.666  

  9x=15  

  x=159

x=5310x - x = 16.666\ldots - 1.666\ldots \implies 9x = 15 \implies x = \frac{15}{9} = \frac{5}{3}

Final Answer: 53\frac{5}{3}

(ii) 0.870.87
Solution:

0.87=871000.87 = \frac{87}{100}

GCD of 87 and 100 is 1 (87 = 3 × 29, 100 = 2² × 5²).
Final Answer: 87100\frac{87}{100}

(iii) 5.463-5.463
Solution:

5.463=54631000-5.463 = -\frac{5463}{1000}

GCD of 5463 and 1000 is 1 (5463 = 3² × 607, 1000 = 2³ × 5³).
Final Answer: 54631000-\frac{5463}{1000}


2. (a) Let S={0,13,2,1.414,227,2,3,0.75,π,5,2,25,3}S = \{0, \frac{1}{3}, -2, 1.414, \frac{22}{7}, \sqrt{2}, \sqrt{3}, 0.75, \pi, \sqrt{5}, 2, \frac{2}{5}, -3\}.

Let A={integers in S}A = \{\text{integers in } S\}, B={rational numbers in S}B = \{\text{rational numbers in } S\}, C={irrational numbers in S}C = \{\text{irrational numbers in } S\}.
Write the elements of:
(i) BCB \cap C


Solution:

  • Rationals BB: 0,13,2,1.414,227,0.75,2,25,30, \frac{1}{3}, -2, 1.414, \frac{22}{7}, 0.75, 2, \frac{2}{5}, -3
  • Irrationals CC: 2,3,π,5\sqrt{2}, \sqrt{3}, \pi, \sqrt{5}
  • BC=B \cap C = \emptyset (no number is both rational and irrational).
    Final Answer: \emptyset

(ii) ABA \cup B' (where universal set is SS, so B=CB' = C)


Solution:

  • Integers AA: 0,2,2,30, -2, 2, -3
  • B=C={2,3,π,5}B' = C = \{\sqrt{2}, \sqrt{3}, \pi, \sqrt{5}\}
  • AB={0,2,2,3,2,3,π,5}A \cup B' = \{0, -2, 2, -3, \sqrt{2}, \sqrt{3}, \pi, \sqrt{5}\}
    Final Answer: {0,2,2,3,2,3,π,5}\{0, -2, 2, -3, \sqrt{2}, \sqrt{3}, \pi, \sqrt{5}\}

(iii) BCB \cup C' (where C=BC' = B)


Solution:

  • C=BC' = B (since S=BCS = B \cup C and BC=B \cap C = \emptyset)
  • BC=BB=B={0,13,2,1.414,227,0.75,2,25,3}B \cup C' = B \cup B = B = \{0, \frac{1}{3}, -2, 1.414, \frac{22}{7}, 0.75, 2, \frac{2}{5}, -3\}

Final Answer: {0,13,2,1.414,227,0.75,2,25,3}\{0, \frac{1}{3}, -2, 1.414, \frac{22}{7}, 0.75, 2, \frac{2}{5}, -3\}


(b) Let f(x)=53x1f(x) = \frac{5}{3x-1}, find:

(i) f(2)f(2)
Solution:

f(2)=53(2)1

=561

=55

=1f(2) = \frac{5}{3(2) - 1} = \frac{5}{6 - 1} = \frac{5}{5} = 1

Final Answer: 11

(ii) The range of ff
Solution:
Let y=53x1y = \frac{5}{3x - 1}. Solve for xx:

y(3x1)=5  

  3xyy=5  

  x=y+53yy(3x - 1) = 5 \implies 3xy - y = 5 \implies x = \frac{y + 5}{3y}

Defined for all y0y \neq 0.
Final Answer: R{0}\mathbb{R} \setminus \{0\}

(iii) Solve log(x)=2x1\log(x) = \frac{2}{x-1} where g(x)=x1g(x) = x^{-1} (assumed typo, intended g(x)=2x1g(x) = \frac{2}{x-1})
Solution:
Assume equation is g(x)=2x1g(x) = \frac{2}{x-1} with g(x)=x1=1xg(x) = x^{-1} = \frac{1}{x}:

1x=2x1\frac{1}{x} = \frac{2}{x - 1}

Cross-multiply:

(x1)=2x  

  1=2xx  

  x=1(x - 1) = 2x \implies -1 = 2x - x \implies x = -1

Verify: g(1)=11=1g(-1) = \frac{1}{-1} = -1

211

=22

=1\frac{2}{-1-1} = \frac{2}{-2} = -1.
Final Answer: x=1x = -1


(c) Binary operation *: ab=a2+b22a * b = a^2 + b^2 - 2

(i) Commutative?


Solution:
ab=a2+b22a * b = a^2 + b^2 - 2, ba=b2+a22=a2+b22b * a = b^2 + a^2 - 2 = a^2 + b^2 - 2.
Yes, commutative.
Final Answer: Yes

(ii) Associative?


Solution:
Check (ab)c=?a(bc)(a * b) * c \overset{?}{=} a * (b * c):

  • (ab)c=(a2+b22)2+c22(a * b) * c = (a^2 + b^2 - 2)^2 + c^2 - 2
  • a(bc)=a2+(b2+c22)22a * (b * c) = a^2 + (b^2 + c^2 - 2)^2 - 2
    Test a=1,b=2,c=3a=1, b=2, c=3:
    (12)3=(1+42)3=33=9+92=16(1 * 2) * 3 = (1 + 4 - 2) * 3 = 3 * 3 = 9 + 9 - 2 = 16
    1(23)=1(4+92)=111=1+1212=120161 * (2 * 3) = 1 * (4 + 9 - 2) = 1 * 11 = 1 + 121 - 2 = 120 \neq 16.
    Not associative.
    Final Answer: No

(iii) Evaluate (32)5(3 * 2) * 5


Solution:
32=32+222=9+42=113 * 2 = 3^2 + 2^2 - 2 = 9 + 4 - 2 = 11
115=112+522=121+252=14411 * 5 = 11^2 + 5^2 - 2 = 121 + 25 - 2 = 144
Final Answer: 144144


3. (a) Universal set X=[3,10]X = [-3, 10], subsets A=(2,3]A = (-2, 3], B=[0,5]B = [0, 5], C=[1,7]C = [-1, 7].

Write in interval form and display on number line.
(i) CAC' \cap A


Solution:

  • C=XC=[3,1)(7,10]C' = X \setminus C = [-3, -1) \cup (7, 10]
  • A=(2,3]A = (-2, 3]
  • CA=(2,1)C' \cap A = (-2, -1)
    Number Line:
  -3    -2     -1      3      7    10
  [-----o------o)     ...    (o-----]
  Shaded: (-2, -1)

(ii) (AB)C(A \cap B) - C


Solution:

  • AB=(2,3][0,5]=[0,3]A \cap B = (-2, 3] \cap [0, 5] = [0, 3]
  • (AB)C=[0,3][1,7]=(A \cap B) - C = [0, 3] \setminus [-1, 7] = \emptyset (since [0,3][1,7][0, 3] \subset [-1, 7])
    Final Answer: \emptyset

(iii) A(AB)A \cap (A \cup B)'


Solution:

  • AB=(2,3][0,5]=(2,5]A \cup B = (-2, 3] \cup [0, 5] = (-2, 5]
  • (AB)=X(2,5]=[3,2](5,10](A \cup B)' = X \setminus (-2, 5] = [-3, -2] \cup (5, 10]
  • A(AB)=(2,3]([3,2](5,10])=A \cap (A \cup B)' = (-2, 3] \cap ([-3, -2] \cup (5, 10]) = \emptyset
    Final Answer: \emptyset

(iv) XX'
Solution:
Complement of universal set is empty set.
Final Answer: \emptyset


(b) Define:

(i) Into relation
A relation R:ABR: A \to B is into if at least one element of BB is not mapped to by any element of AA (i.e., Range(R)B\text{Range}(R) \subsetneqq B).

(ii) Domain of a function
The set of all input values for which the function is defined.

(iii) Range of a function
The set of all output values produced by the function.


(c) f(x)=3x+4f(x) = 3x + 4

(i) Show ff is one-to-one
Solution:
Assume f(a)=f(b)f(a) = f(b):
3a+4=3b+4    3a=3b    a=b3a + 4 = 3b + 4 \implies 3a = 3b \implies a = b.
Thus, injective.

(ii) Find f1f^{-1} and its domain
Solution:
Let y=3x+4y = 3x + 4. Solve for xx:
y4=3x    x=y43y - 4 = 3x \implies x = \frac{y - 4}{3}.
So f1(x)=x43f^{-1}(x) = \frac{x - 4}{3}.
Domain: Range of ff is R\mathbb{R}, so domain of f1f^{-1} is R\mathbb{R}.

(iii) Solve f1(x)=g(x)f^{-1}(x) = g(x) where g(x)=3x+2g(x) = 3x + 2


Solution:

x43=3x+2\frac{x - 4}{3} = 3x + 2

Multiply by 3:
x4=9x+6  

  46=9xx  

  10=8x  

  x=108

=54x - 4 = 9x + 6 \implies -4 - 6 = 9x - x \implies -10 = 8x \implies x = -\frac{10}{8} = -\frac{5}{4}.

Final Answer: x=54x = -\frac{5}{4}


4. (a) Find domain and range:

(i) f(x)=1x+1f(x) = \frac{1}{x+1}

Solution:

  • Domain: x+10    x1x + 1 \neq 0 \implies x \neq -1, so (,1)(1,)(-\infty, -1) \cup (-1, \infty).
  • Range: Let y=1x+1y = \frac{1}{x+1}. Solve for xx: x=1y1x = \frac{1}{y} - 1. Defined for y0y \neq 0.
    Final Answer: Domain: R{1}\mathbb{R} \setminus \{-1\}, Range: R{0}\mathbb{R} \setminus \{0\}.

(ii) f(x)=1x2f(x) = \sqrt{1 - x^2}

Solution:

  • Domain: 1x20    x21    [1,1]1 - x^2 \geq 0 \implies x^2 \leq 1 \implies [-1, 1].
  • Range: For x[1,1]x \in [-1, 1], f(x)[0,1]f(x) \in [0, 1].
    Final Answer: Domain: [1,1][-1, 1], Range: [0,1][0, 1].

(b) f(x)=2x+1x3f(x) = \frac{2x+1}{x-3} (x3x \neq 3)

(i) Find f1f^{-1}

Solution:
Let y=2x+1x3y = \frac{2x+1}{x-3}. Solve for xx:

y(x3)=2x+1  

  yx3y=2x+1  

  yx2x=3y+1  

  x(y2)=3y+1  

  x=3y+1y2y(x - 3) = 2x + 1 \implies yx - 3y = 2x + 1 \implies yx - 2x = 3y + 1 \implies x(y - 2) = 3y + 1 \implies x = \frac{3y + 1}{y - 2}

So f1(x)=3x+1x2f^{-1}(x) = \frac{3x + 1}{x - 2}.

(ii) State where f1f^{-1} is undefined

Solution:
Denominator zero when x2=0    x=2x - 2 = 0 \implies x = 2.
Final Answer: x=2x = 2


(c) Determine if odd, even, or neither:

(i) f(x)=x3+xf(x) = x^3 + x

Solution:
Check f(x)=(x)3+(x)=x3x=(x3+x)=f(x)f(-x) = (-x)^3 + (-x) = -x^3 - x = -(x^3 + x) = -f(x).
Odd.

(ii) f(x)=x9xf(x) = x^9 - x

Solution:
f(x)=(x)9(x)=x9+x=(x9x)=f(x)f(-x) = (-x)^9 - (-x) = -x^9 + x = -(x^9 - x) = -f(x).
Odd.

(iii) f(x)=9x2f(x) = -\sqrt{9 - x^2}

Solution:
f(x)=9(x)2=9x2=f(x)f(-x) = -\sqrt{9 - (-x)^2} = -\sqrt{9 - x^2} = f(x).
Even.

@Dr. Microbiota


END OF SOLUTIONS