INTRODUCTION TO MATHEMATICAL METHODS

SEMESTER ONE EXAMINATION JAN INTAKE 2022 

DATE : 30th MAY, 2022



Question 1

QUESTION ONE

(a)
(i) Express 2x2+7x+5=02x^2 + 7x + 5 = 0 in the form (x+a)2=k(x + a)^2 = k.
Solution:

2x2+7x+5=0x2+72x+52=0(Divide by 2)x2+72x=52(Isolate x terms)x2+72x+(74)2=52+(74)2(Complete the square)(x+74)2=52+4916(x+74)2=4016+4916(x+74)2=916\begin{align*} 2x^2 + 7x + 5 &= 0 \\ x^2 + \frac{7}{2}x + \frac{5}{2} &= 0 \quad \text{(Divide by 2)} \\ x^2 + \frac{7}{2}x &= -\frac{5}{2} \quad \text{(Isolate $x$ terms)} \\ x^2 + \frac{7}{2}x + \left(\frac{7}{4}\right)^2 &= -\frac{5}{2} + \left(\frac{7}{4}\right)^2 \quad \text{(Complete the square)} \\ \left(x + \frac{7}{4}\right)^2 &= -\frac{5}{2} + \frac{49}{16} \\ \left(x + \frac{7}{4}\right)^2 &= -\frac{40}{16} + \frac{49}{16} \\ \left(x + \frac{7}{4}\right)^2 &= \frac{9}{16} \end{align*}

Answer: (x+74)2=916\left(x + \frac{7}{4}\right)^2 = \frac{9}{16}

(ii) Hence state the value of aa and kk.
Solution:
From part (i), a=74a = \frac{7}{4}, k=916k = \frac{9}{16}.
Answer: a=74a = \frac{7}{4}, k=916k = \frac{9}{16}


(b) Rationalize the denominator:
(i) 52+5\frac{5}{2 + \sqrt{5}}
Solution:
Multiply numerator and denominator by conjugate 252 - \sqrt{5}:

52+5X2525=5(25)(2)2(5)2=105545=10551

=10+55\begin{align*} \frac{5}{2 + \sqrt{5}} \cdot \frac{2 - \sqrt{5}}{2 - \sqrt{5}} &= \frac{5(2 - \sqrt{5})}{(2)^2 - (\sqrt{5})^2} \\ &= \frac{10 - 5\sqrt{5}}{4 - 5} \\ &= \frac{10 - 5\sqrt{5}}{-1} \\ &= -10 + 5\sqrt{5} \end{align*}

Answer: 10+55-10 + 5\sqrt{5}

(ii) 351+35\frac{3 - \sqrt{5}}{1 + 3\sqrt{5}}
Solution:
Multiply numerator and denominator by conjugate 1351 - 3\sqrt{5}:

351+35135135=(35)(135)(1)2(35)2

Numerator: 3X1=3

3X(35)=95

(5)X1=5

(5)X(35)=15

Total: 3955+15=18105

Denominator: 19X5=145=44

1810544

=18+10544

=9+5522\begin{align*} \frac{3 - \sqrt{5}}{1 + 3\sqrt{5}} \cdot \frac{1 - 3\sqrt{5}}{1 - 3\sqrt{5}} &= \frac{(3 - \sqrt{5})(1 - 3\sqrt{5})}{(1)^2 - (3\sqrt{5})^2} \\ \text{Numerator: } & 3 \cdot 1 = 3 \\ & 3 \cdot (-3\sqrt{5}) = -9\sqrt{5} \\ & (-\sqrt{5}) \cdot 1 = -\sqrt{5} \\ & (-\sqrt{5}) \cdot (-3\sqrt{5}) = 15 \\ & \text{Total: } 3 - 9\sqrt{5} - \sqrt{5} + 15 = 18 - 10\sqrt{5} \\ \text{Denominator: } & 1 - 9 \cdot 5 = 1 - 45 = -44 \\ & \frac{18 - 10\sqrt{5}}{-44} = \frac{-18 + 10\sqrt{5}}{44} = \frac{-9 + 5\sqrt{5}}{22} \end{align*}

Answer: 9+5522\frac{-9 + 5\sqrt{5}}{22}


(c) Express in form ab\frac{a}{b} (a,ba, b integers, b0b \neq 0):
(i) 1.6661.666\ldots
Solution:
Let x=1.666x = 1.666\ldots

10x=16.666

10xx=16.6661.666

9x=15

x=159=53\begin{align*} 10x &= 16.666\ldots \\ 10x - x &= 16.666\ldots - 1.666\ldots \\ 9x &= 15 \\ x &= \frac{15}{9} = \frac{5}{3} \end{align*}

Answer: 53\frac{5}{3}

(ii) 0.870.87
Solution:

0.87=871000.87 = \frac{87}{100}

Answer: 87100\frac{87}{100}

(iii) 5.463-5.463
Solution:

5.463=54631000-5.463 = -\frac{5463}{1000}

Answer: 54631000-\frac{5463}{1000}


(d) Differentiate:
(i) f(x)=(2xx4)(x3x12)f(x) = (2x - x^4)(x^3 - x - 12)
Solution:
Use product rule: ddx[uv]=uv+uv\frac{d}{dx}[uv] = u'v + uv'
Let u=2xx4u = 2x - x^4, v=x3x12v = x^3 - x - 12

u=24x3,v=3x21u' = 2 - 4x^3, \quad v' = 3x^2 - 1 f(x)=(24x3)(x3x12)+(2xx4)(3x21)f'(x) = (2 - 4x^3)(x^3 - x - 12) + (2x - x^4)(3x^2 - 1)

Expand:

(24x3)(x3x12)=2x32x244x6+4x4+48x3

=4x6+4x4+50x32x24

(2xx4)(3x21)

=6x32x3x6+x4

=3x6+x4+6x32x

Sum: (4x6+4x4+50x32x24)+(3x6+x4+6x32x)

=7x6+5x4+56x34x24\begin{align*} &(2 - 4x^3)(x^3 - x - 12) = 2x^3 - 2x - 24 - 4x^6 + 4x^4 + 48x^3 = -4x^6 + 4x^4 + 50x^3 - 2x - 24 \\ &(2x - x^4)(3x^2 - 1) = 6x^3 - 2x - 3x^6 + x^4 = -3x^6 + x^4 + 6x^3 - 2x \\ \text{Sum: } & (-4x^6 + 4x^4 + 50x^3 - 2x - 24) + (-3x^6 + x^4 + 6x^3 - 2x) = -7x^6 + 5x^4 + 56x^3 - 4x - 24 \end{align*}

Answer: f(x)=7x6+5x4+56x34x24f'(x) = -7x^6 + 5x^4 + 56x^3 - 4x - 24

(ii) y=3x1x2+5xy = \frac{3x - 1}{x^2 + 5x}
Solution:
Use quotient rule: ddx[uv]=uvuvv2\frac{d}{dx}\left[\frac{u}{v}\right] = \frac{u'v - uv'}{v^2}
Let u=3x1u = 3x - 1, v=x2+5xv = x^2 + 5x

u=3,v=2x+5u' = 3, \quad v' = 2x + 5

y=3(x2+5x)(3x1)(2x+5)(x2+5x)2y' = \frac{3(x^2 + 5x) - (3x - 1)(2x + 5)}{(x^2 + 5x)^2}

Numerator:

3x2+15x[(3x1)(2x+5)]

(3x1)(2x+5)=6x2+15x2x5

=6x2+13x5

THEREFORE  3x2+15x(6x2+13x5)

=3x2+15x6x213x+5

=3x2+2x+5\begin{align*} &3x^2 + 15x - [(3x-1)(2x+5)] \\ &(3x-1)(2x+5) = 6x^2 + 15x - 2x - 5 = 6x^2 + 13x - 5 \\ &3x^2 + 15x - (6x^2 + 13x - 5) = 3x^2 + 15x - 6x^2 - 13x + 5 = -3x^2 + 2x + 5 \end{align*}

Answer: y=3x2+2x+5(x2+5x)2y' = \frac{-3x^2 + 2x + 5}{(x^2 + 5x)^2}


(e) Solve simultaneously:

5xX252y=5,32xX9y1=1275^x \cdot 25^{2y} = 5, \quad 3^{2x} \cdot 9^{y-1} = \frac{1}{27}

Solution:
Rewrite using base 5 and 3:

252y=(52)2y=54y,

9y1=(32)y1=32(y1)25^{2y} = (5^2)^{2y} = 5^{4y}, \quad 9^{y-1} = (3^2)^{y-1} = 3^{2(y-1)}

Equations become:

5xX54y=51  

  5x+4y=51  

  x+4y=1EQUESTION(1)

5^x \cdot 5^{4y} = 5^1 \implies 5^{x+4y} = 5^1 \implies x + 4y = 1 \quad \text{(1)} 32xX32(y1)=33(since 127=33)  

  32x+2y2=33  

  2x+2y2=33^{2x} \cdot 3^{2(y-1)} = 3^{-3} \quad (\text{since } \frac{1}{27} = 3^{-3}) \implies 3^{2x + 2y - 2} = 3^{-3} \implies 2x + 2y - 2 = -3

2x+2y=1EQUESTION(2)2x + 2y = -1 \quad \text{(2)}

Solve system:
From (1): x=14yx = 1 - 4y
Substitute into (2):

2(14y)+2y=1  

  28y+2y=1  

  26y=1  

  6y=3  

  y=122(1 - 4y) + 2y = -1 \implies 2 - 8y + 2y = -1 \implies 2 - 6y = -1 \implies -6y = -3 \implies y = \frac{1}{2}

x=14(12)=12=1x = 1 - 4(\frac{1}{2}) = 1 - 2 = -1

Answer: x=1x = -1, y=12y = \frac{1}{2}


(f) Find range of f(x)=4x15f(x) = 4x - 15, domain Df={x:15<x<250,xZ}D_f = \{x : 15 < x < 250, x \in \mathbb{Z}\}.
Solution:
Domain is integers from 16 to 249 inclusive.
ff is linear and increasing.
Min: f(16)=4(16)15=6415=49f(16) = 4(16) - 15 = 64 - 15 = 49
Max: f(249)=4(249)15=99615=981f(249) = 4(249) - 15 = 996 - 15 = 981
Range is all integers from 49 to 981 inclusive.
Answer: Range = {yZ:49y981}\{y \in \mathbb{Z} : 49 \leq y \leq 981\}


QUESTION TWO

(a) Given set S={0.3,2,1.414,227,2,3,0.75,π,5,2,25,3}S = \{0.3, -2, 1.414, \frac{22}{7}, \sqrt{2}, \sqrt{3}, 0.75, \pi, \sqrt{5}, 2, \frac{2}{5}, -3\}:

  • A={integers}={3,2,2}A = \{\text{integers}\} = \{-3, -2, 2\}
  • B={rationals}={0.3=310,2,227,0.75=34,2,25}B = \{\text{rationals}\} = \{0.3 = \frac{3}{10}, -2, \frac{22}{7}, 0.75 = \frac{3}{4}, 2, \frac{2}{5}\}
  • C={irrationals}={1.4142? but 2 is listed separately,2,3,π,5}C = \{\text{irrationals}\} = \{1.414 \approx \sqrt{2}? \text{ but } \sqrt{2} \text{ is listed separately}, \sqrt{2}, \sqrt{3}, \pi, \sqrt{5}\}
    Note: 1.4141.414 is rational (terminating decimal), but 21.414\sqrt{2} \approx 1.414 is irrational. Since 2\sqrt{2} is separately listed, 1.4141.414 is likely rational.

(i) BCB \cap C
Rational and irrational sets are disjoint, so BC=B \cap C = \emptyset.
Answer: \emptyset

(ii) ABA \cup B'
B=SB={2,3,π,5}B' = S \setminus B = \{\sqrt{2}, \sqrt{3}, \pi, \sqrt{5}\} (since 1.4141.414 is rational)
AB={3,2,2}{2,3,π,5}={3,2,2,2,3,π,5}A \cup B' = \{-3, -2, 2\} \cup \{\sqrt{2}, \sqrt{3}, \pi, \sqrt{5}\} = \{-3, -2, 2, \sqrt{2}, \sqrt{3}, \pi, \sqrt{5}\}
Answer: {3,2,2,2,3,π,5}\{-3, -2, 2, \sqrt{2}, \sqrt{3}, \pi, \sqrt{5}\}

(iii) BCB \cup C'
C=SC={0.3,2,227,0.75,2,25}C' = S \setminus C = \{0.3, -2, \frac{22}{7}, 0.75, 2, \frac{2}{5}\} (rationals)
BC=BB \cup C' = B (since CBC' \subseteq B)
Answer: B={0.3,2,227,0.75,2,25}B = \{0.3, -2, \frac{22}{7}, 0.75, 2, \frac{2}{5}\}


(b) f(x)=53x1f(x) = \frac{5}{3x-1}

(i) f(2)=53(2)1=55=1f(2) = \frac{5}{3(2)-1} = \frac{5}{5} = 1
Answer: 11

(ii) Inverse: Let y=53x1y = \frac{5}{3x-1}. Solve for xx:

y(3x1)=5  

  3xyy=5

  3xy=y+5  

  x=y+53yy(3x - 1) = 5 \implies 3xy - y = 5 \implies 3xy = y + 5 \implies x = \frac{y + 5}{3y}

So f1(x)=x+53xf^{-1}(x) = \frac{x + 5}{3x}
Answer: f1(x)=x+53xf^{-1}(x) = \frac{x+5}{3x}

(iii) Solve logg(x)=2x1\log g(x) = \frac{2}{x-1} where g(x)=x1g(x) = x-1.
Equation is log(x1)=2x1\log(x-1) = \frac{2}{x-1}. Let u=x1u = x-1:

logu=2u    ulogu=2\log u = \frac{2}{u} \implies u \log u = 2

By inspection, u=4u = 4: 4log4=40.6022.40824 \log 4 = 4 \cdot 0.602 \approx 2.408 \neq 2
u=2u = 2: 2log220.301=0.60222 \log 2 \approx 2 \cdot 0.301 = 0.602 \neq 2
Trial: u=10u = 10: 10log10101=10>210 \log 10 \approx 10 \cdot 1 = 10 > 2
u=5u = 5: 5log550.699=3.495>25 \log 5 \approx 5 \cdot 0.699 = 3.495 > 2
u=3u = 3: 3log330.477=1.431<23 \log 3 \approx 3 \cdot 0.477 = 1.431 < 2
No integer solution. Use numerical method or note that ulogu=2u \log u = 2 has solution u4.32u \approx 4.32 (but exact form not required).
Note: The problem likely expects an exact solution. Let v=loguv = \log u, then u=10vu = 10^v, so 10vv=210^v \cdot v = 2. This is transcendental; no algebraic solution.
Clarify: The equation is written as "(log)(x)=2x1\left( \log \right)(x) = \frac{2}{x-1}", which is ambiguous. Assuming log\log is base 10 and applied to g(x)g(x), so log10(x1)=2x1\log_{10}(x-1) = \frac{2}{x-1}.
Answer: No algebraic solution.


(c) Binary operation ab=a2+b22a * b = a^2 + b^2 - 2

(i) Commutative? Check ab=baa * b = b * a:
ab=a2+b22a * b = a^2 + b^2 - 2, ba=b2+a22=a2+b22b * a = b^2 + a^2 - 2 = a^2 + b^2 - 2. Yes.
Answer: Yes

(ii) Associative? Check (ab)c=a(bc)(a * b) * c = a * (b * c):
Left: (ab)c=(a2+b22)c=(a2+b22)2+c22(a * b) * c = (a^2 + b^2 - 2) * c = (a^2 + b^2 - 2)^2 + c^2 - 2
Right: a(bc)=a(b2+c22)=a2+(b2+c22)22a * (b * c) = a * (b^2 + c^2 - 2) = a^2 + (b^2 + c^2 - 2)^2 - 2
Not equal in general (e.g., a=1,b=1,c=1a=1,b=1,c=1:

left = (1+12)2+12=0+12=1(1+1-2)^2 +1-2 = 0 +1-2=-1,

right = 1+(1+12)22=1+02=11 + (1+1-2)^2 -2=1+0-2=-1 — equal,

but try a=1,b=2,c=3a=1,b=2,c=3:
Left: (12)3=(1+42)3=33=9+92=16(1*2)*3 = (1+4-2)*3 = 3*3 = 9 + 9 - 2 = 16
Right: 1(23)=1(4+92)=111=1+1212=120161*(2*3) = 1*(4+9-2)=1*11=1+121-2=120 \neq 16. No.
Answer: No

(iii) (32)5(3 * 2) * 5:
32=32+222=9+42=113 * 2 = 3^2 + 2^2 - 2 = 9 + 4 - 2 = 11
115=112+522=121+252=14411 * 5 = 11^2 + 5^2 - 2 = 121 + 25 - 2 = 144
Answer: 144144


(d) Height f(t)=15t4t2f(t) = 15t - 4t^2 metres.

(i) Greatest height: Vertex at t=b2a=152(4)=158=1.875t = -\frac{b}{2a} = -\frac{15}{2(-4)} = \frac{15}{8} = 1.875 s

Height: f(1.875)=15(1.875)4(1.875)2

=28.1254(3.515625)

=28.12514.0625

=14.0625f(1.875) = 15(1.875) - 4(1.875)^2 = 28.125 - 4(3.515625) = 28.125 - 14.0625 = 14.0625 m
Answer: 14.062514.0625 m

(ii) Time: t=1.875t = 1.875 s
Answer: 1.8751.875 seconds


(e) Solve:
(i) log2(x2+5x2)=log2(x2+3x6)+log49\log_2 (x^2 + 5x - 2) = \log_2 (x^2 + 3x - 6) + \log_4 9
Note log49=log29log24=2log232=log23\log_4 9 = \frac{\log_2 9}{\log_2 4} = \frac{2 \log_2 3}{2} = \log_2 3
Equation:

log2(x2+5x2)=log2(x2+3x6)+log23

=log2[3(x2+3x6)]\log_2 (x^2 + 5x - 2) = \log_2 (x^2 + 3x - 6) + \log_2 3 = \log_2 [3(x^2 + 3x - 6)]

So:

x2+5x2=3(x2+3x6)=3x2+9x18

x^2 + 5x - 2 = 3(x^2 + 3x - 6) = 3x^2 + 9x - 18 0=2x2+4x16  

  x2+2x8=00 = 2x^2 + 4x - 16 \implies x^2 + 2x - 8 = 0

Factors: (x+4)(x2)=0(x+4)(x-2)=0, so x=4x=-4 or x=2x=2
Check domain: Arguments of log must be positive.
For x=2x=2: x2+5x2=4+102=12>0x^2+5x-2=4+10-2=12>0, x2+3x6=4+66=4>0x^2+3x-6=4+6-6=4>0
For x=4x=-4: x2+5x2=16202=6<0x^2+5x-2=16-20-2=-6<0 (invalid)
Answer: x=2x=2

(ii) 2x+22x=52^x + 2^{2-x} = 5
Let u=2xu = 2^x, then 22x=42x=4u2^{2-x} = \frac{4}{2^x} = \frac{4}{u}
Equation: u+4u=5u + \frac{4}{u} = 5
Multiply by uu: u2+4=5u    u25u+4=0u^2 + 4 = 5u \implies u^2 - 5u + 4 = 0
Factors: (u4)(u1)=0(u-4)(u-1)=0, so u=4u=4 or u=1u=1
Thus 2x=4    x=22^x=4 \implies x=2, or 2x=1    x=02^x=1 \implies x=0
Answer: x=0x=0 or x=2x=2


QUESTION THREE

(a) Universal set X=[3,10]X = [-3, 10], subsets A=(2,3]A = (-2, 3], B=[0,5]B = [0,5], C=[1,7]C = [-1,7].

(i) CA=(2,3][1,7]

=[1,3]C \cap A = (-2, 3] \cap [-1,7] = [-1, 3]
Interval: [1,3][-1, 3]
Number line:

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10  
      [========]  

(ii) (AB)C(A \cap B) - C
First, AB=(2,3][0,5]=[0,3]A \cap B = (-2,3] \cap [0,5] = [0,3]
Then [0,3]C=[0,3][1,7]=[0,3] - C = [0,3] \setminus [-1,7] = \emptyset

(since [0,3][1,7][0,3] \subseteq [-1,7])
Interval: \emptyset

(iii) A(AB)A \cap (A' \cup B)
A=XA=[3,2](3,10]A' = X \setminus A = [-3, -2] \cup (3, 10]
AB=[3,2](3,10][0,5]

=[3,2][0,10]A' \cup B = [-3, -2] \cup (3,10] \cup [0,5] = [-3,-2] \cup [0,10]
A(AB)=(2,3]([3,2][0,10])

=[0,3]A \cap (A' \cup B) = (-2,3] \cap ([-3,-2] \cup [0,10]) = [0,3]
Interval: [0,3][0,3]

(iv) XX' (complement in universal set, but universal set is given as XX, so likely in R\mathbb{R})
Answer: (,3)(10,)(-\infty, -3) \cup (10, \infty)


(b) Quadratic f(x)=3x24x5f(x) = 3x^2 - 4x - 5.

(i) Vertex: x=b2a=46=23x = -\frac{b}{2a} = \frac{4}{6} = \frac{2}{3}

f(23)=3(23)24(23)5

=3X49835

=43835

=435

=193f\left(\frac{2}{3}\right) = 3\left(\frac{2}{3}\right)^2 - 4\left(\frac{2}{3}\right) - 5 = 3 \cdot \frac{4}{9} - \frac{8}{3} - 5 = \frac{4}{3} - \frac{8}{3} - 5 = -\frac{4}{3} - 5 = -\frac{19}{3}

Answer: (23,193)\left(\frac{2}{3}, -\frac{19}{3}\right)

(ii) xx-intercepts: Solve 3x24x5=03x^2 - 4x - 5 = 0

x=4±16+606

=4±766

=4±2196

=2±193x = \frac{4 \pm \sqrt{16 + 60}}{6} = \frac{4 \pm \sqrt{76}}{6} = \frac{4 \pm 2\sqrt{19}}{6} = \frac{2 \pm \sqrt{19}}{3}

Answer: 2±193\frac{2 \pm \sqrt{19}}{3}

(iii) yy-intercept: f(0)=5f(0) = -5
Answer: (0,5)(0, -5)

(iv) Sketch:

  • Opens upwards (coefficient of x2>0x^2 > 0)
  • Vertex (230.667,1936.333)\left(\frac{2}{3} \approx 0.667, -\frac{19}{3} \approx -6.333\right)
  • xx-intercepts 2±193\frac{2 \pm \sqrt{19}}{3} (194.36\sqrt{19} \approx 4.36, so 2.12\approx 2.12 and 0.787-0.787)
  • yy-intercept (0,5)
  • (0, -5)

(c) Bottles: xx bottles at K150, yy at K170. Actual cost: 150x+170y=18800150x + 170y = 18800
Hypothetical: Half at 150 and twice at 170:
12x\frac{1}{2}x at K150, 2y2y at K170, cost: 150x2+1702y=75x+340y=19600150 \cdot \frac{x}{2} + 170 \cdot 2y = 75x + 340y = 19600
System:

150x+170y=18800(1)150x + 170y = 18800 \quad \text{(1)}

75x+340y=19600(2)75x + 340y = 19600 \quad \text{(2)}

Multiply (1) by 2: 300x+340y=37600300x + 340y = 37600
Subtract (2): 300x+340y(75x+340y)=3760019600  

  225x=18000  

  x=80300x + 340y - (75x + 340y) = 37600 - 19600 \implies 225x = 18000 \implies x = 80

From (1): 150(80)+170y=18800  

  12000+170y=18800  

  170y=6800  

  y=40150(80) + 170y = 18800 \implies 12000 + 170y = 18800 \implies 170y = 6800 \implies y = 40
Total bottles: x+y=80+40=120x + y = 80 + 40 = 120
Answer: 120 bottles


(d) Roots α,β\alpha, \beta of f(x)=2+5x3x2=0f(x) = 2 + 5x - 3x^2 = 0 (or 3x25x2=03x^2 - 5x - 2 = 0)

(i) Equation with roots α3,β3\alpha^3, \beta^3.
Sum α+β=53\alpha + \beta = \frac{5}{3}, product αβ=23\alpha\beta = -\frac{2}{3}
Sum of new roots: α3+β3=(α+β)(α2αβ+β2)=(α+β)[(α+β)23αβ]\alpha^3 + \beta^3 = (\alpha+\beta)(\alpha^2 - \alpha\beta + \beta^2) = (\alpha+\beta)[(\alpha+\beta)^2 - 3\alpha\beta]

=53[(53)23(23)]

=53[259+2]

=53[259+189]

=53X439

=21527= \frac{5}{3} \left[ \left(\frac{5}{3}\right)^2 - 3\left(-\frac{2}{3}\right) \right] = \frac{5}{3} \left[ \frac{25}{9} + 2 \right] = \frac{5}{3} \left[ \frac{25}{9} + \frac{18}{9} \right] = \frac{5}{3} \cdot \frac{43}{9} = \frac{215}{27}

Product: α3β3=(αβ)3=(23)3=827\alpha^3\beta^3 = (\alpha\beta)^3 = \left(-\frac{2}{3}\right)^3 = -\frac{8}{27}
Equation: t2(sum)t+product=0t^2 - (\text{sum})t + \text{product} = 0

t221527t827=0  

  27t2215t8=0t^2 - \frac{215}{27}t - \frac{8}{27} = 0 \implies 27t^2 - 215t - 8 = 0

Answer: 27t2215t8=027t^2 - 215t - 8 = 0

(ii) 1α2+1+1β2+1=(β2+1)+(α2+1)(α2+1)(β2+1)=α2+β2+2α2β2+α2+β2+1\frac{1}{\alpha^2 + 1} + \frac{1}{\beta^2 + 1} = \frac{(\beta^2 + 1) + (\alpha^2 + 1)}{(\alpha^2 + 1)(\beta^2 + 1)} = \frac{\alpha^2 + \beta^2 + 2}{\alpha^2\beta^2 + \alpha^2 + \beta^2 + 1}

α2+β2=(α+β)22αβ=(53)22(23)

=259+43

=259+129

=379\alpha^2 + \beta^2 = (\alpha+\beta)^2 - 2\alpha\beta = \left(\frac{5}{3}\right)^2 - 2\left(-\frac{2}{3}\right) = \frac{25}{9} + \frac{4}{3} = \frac{25}{9} + \frac{12}{9} = \frac{37}{9}

α2β2=(αβ)2=(23)2

=49\alpha^2\beta^2 = (\alpha\beta)^2 = \left(-\frac{2}{3}\right)^2 = \frac{4}{9}

Numerator: α2+β2+2=379+2

=379+189

=559\alpha^2 + \beta^2 + 2 = \frac{37}{9} + 2 = \frac{37}{9} + \frac{18}{9} = \frac{55}{9}

Denominator: α2β2+α2+β2+1=49+379+1

=419+1

=509\alpha^2\beta^2 + \alpha^2 + \beta^2 + 1 = \frac{4}{9} + \frac{37}{9} + 1 = \frac{41}{9} + 1 = \frac{50}{9}

So 55/950/9

=5550

=1110\frac{55/9}{50/9} = \frac{55}{50} = \frac{11}{10}

Answer: 1110\frac{11}{10}


(e) Derivative of f(x)=(13x2x2)3f(x) = (1 - 3x - 2x^2)^{-3} at x=3x=3.
Let u=13x2x2u = 1 - 3x - 2x^2, so f=u3f = u^{-3}
f=3u4uf' = -3u^{-4} \cdot u', u=34xu' = -3 - 4x
At x=3x=3:
u=1918=26u = 1 - 9 - 18 = -26
u=312=15u' = -3 - 12 = -15


f=3(26)4X(15)

=3X1(26)4X(15)

=3X1456976X(15)

=45456976

=550775.11f' = -3(-26)^{-4} \cdot (-15) = -3 \cdot \frac{1}{(-26)^4} \cdot (-15) = -3 \cdot \frac{1}{456976} \cdot (-15) = \frac{45}{456976} = \frac{5}{50775.11}

Better: (26)4=1264

=1456976(-26)^{-4} = \frac{1}{26^4} = \frac{1}{456976}

So f=3X1456976X(15)

=45456976

=550775.111f' = -3 \cdot \frac{1}{456976} \cdot (-15) = \frac{45}{456976} = \frac{5}{50775.111}?

Simplify: 45456976=5950775.1119\frac{45}{456976} = \frac{5 \cdot 9}{50775.111 \cdot 9}?
Divide numerator and denominator by 3: 15152325.333\frac{15}{152325.333} — no.
GCD of 45 and 456976.
Compute numerically: 262=67626^2=676, 264=6762=45697626^4=676^2=456976
f=454569760.00009845f' = \frac{45}{456976} \approx 0.00009845
But exact: 45456976=59591395.2\frac{45}{456976} = \frac{5 \cdot 9}{5 \cdot 91395.2}?
Factor: 45 = 9×5, 456976 ÷ 16? Better reduce fraction:
GCD of 45 and 456976. 45=3^2×5, 456976 even, not divisible by 5, so GCD=1?
Answer: 45456976\frac{45}{456976} or simplify by dividing numerator and denominator by... 45 and 456976 share no common factors, so 45456976\frac{45}{456976}.

But check calculation:
f(x)=3(13x2x2)4(34x)=3(3+4x)(13x2x2)4f'(x) = -3(1-3x-2x^2)^{-4} \cdot (-3-4x) = 3(3+4x)(1-3x-2x^2)^{-4}
At x=3x=3: 3(3+12)(1918)4=315(26)4=4514569763(3+12)(1-9-18)^{-4} = 3 \cdot 15 \cdot (-26)^{-4} = 45 \cdot \frac{1}{456976}
Yes.
Answer: 45456976\frac{45}{456976}


QUESTION FOUR

(a) Divide x42x37x2+7x+5x^4 - 2x^3 - 7x^2 + 7x + 5 by x2+2x1x^2 + 2x - 1.
Polynomial division:

               x^2 - 4x + 3  
x^2 + 2x - 1 | x^4 - 2x^3 - 7x^2 + 7x + 5  
               -(x^4 + 2x^3 - x^2)  
                      -4x^3 - 6x^2 + 7x  
                      -(-4x^3 - 8x^2 + 4x)  
                              2x^2 + 3x + 5  
                              -(2x^2 + 4x - 2)  
                                     -x + 7  

Quotient: x24x+3x^2 - 4x + 3, Remainder: x+7-x + 7
Answer: Quotient = x24x+3x^2 - 4x + 3, Remainder = x+7

-x + 7

✏️ Step-by-step Division:

We divide term-by-term:

Step 1: Divide leading terms

x4x2=x2\frac{x^4}{x^2} = x^2

Multiply:

x2(x2+2x1)=x4+2x3x2x^2(x^2 + 2x - 1) = x^4 + 2x^3 - x^2

Subtract:

(x42x37x2)(x4+2x3x2)=4x36x2(x^4 - 2x^3 - 7x^2) - (x^4 + 2x^3 - x^2) = -4x^3 -6x^2

Bring down +7x+7x


Step 2: Divide

4x3x2=4x\frac{-4x^3}{x^2} = -4x

Multiply:

4x(x2+2x1)=4x38x2+4x-4x(x^2 + 2x - 1) = -4x^3 - 8x^2 + 4x

Subtract:

(4x36x2+7x)(4x38x2+4x)=2x2+3x(-4x^3 - 6x^2 + 7x) - (-4x^3 - 8x^2 + 4x) = 2x^2 + 3x

Bring down +5+5


Step 3: Divide

2x2x2=2\frac{2x^2}{x^2} = 2

Multiply:

2(x2+2x1)=2x2+4x22(x^2 + 2x - 1) = 2x^2 + 4x - 2

Subtract:

(2x2+3x+5)(2x2+4x2)=x+7(2x^2 + 3x + 5) - (2x^2 + 4x - 2) = -x + 7


✅ Final Answer:

x24x+2+x+7x2+2x1


(b) Cartesian product A×BA \times B has six ordered pairs. Given: (2,1),(2,3),(4,1),(4,5)(2,1), (2,3), (4,1), (4,5).

(i) Elements: From pairs, A={2,4}A = \{2,4\}, B={1,3,5}B = \{1,3,5\} (since 1,3,5 appear)
But total pairs should be A×B=6|A| \times |B| = 6, so A=2|A|=2, B=3|B|=3 or vice versa. Given pairs show A has 2,4 and B has 1,3,5, so missing pairs: (2,5),(4,3)(2,5), (4,3)?
Existing: (2,1),(2,3),(4,1),(4,5) — so missing (2,5) and (4,3)? But (4,5) is given, (2,3) given.
B should be {1,3,5}, so pairs: (2,1),(2,3),(2,5),(4,1),(4,3),(4,5). Given four, missing (2,5) and (4,3).
Answer: A={2,4}A = \{2,4\}, B={1,3,5}B = \{1,3,5\}

(ii) Missing ordered pairs: (2,5),(4,3)(2,5), (4,3)
Answer: (2,5),(4,3)(2,5), (4,3)


(c) P(x)=2x3+3x22x3P(x) = 2x^3 + 3x^2 - 2x - 3

(i) Factors: Possible rational roots ±1,±3,±12,±32\pm1,\pm3,\pm\frac{1}{2},\pm\frac{3}{2}
Try x=1x=1: 2+323=02+3-2-3=0, so (x1)(x-1) is factor.
Divide:

        2x^2 + 5x + 3  
x-1 | 2x^3 + 3x^2 - 2x - 3  
      -(2x^3 - 2x^2)  
            5x^2 - 2x  
            -(5x^2 - 5x)  
                  3x - 3  
                  -(3x - 3)  
                        0  

So P(x)=(x1)(2x2+5x+3)P(x) = (x-1)(2x^2 + 5x + 3)
Factor quadratic: 2x2+5x+3=(2x+3)(x+1)2x^2 + 5x + 3 = (2x+3)(x+1)
Thus P(x)=(x1)(2x+3)(x+1)P(x) = (x-1)(2x+3)(x+1)
Answer: (x1)(x+1)(2x+3)(x-1)(x+1)(2x+3)

(ii) P(x)>0P(x) > 0
Roots at x=1,x=1,x=32x=1, x=-1, x=-\frac{3}{2}
Sign chart:

Interval: (-∞, -3/2) | (-3/2, -1) | (-1, 1) | (1, ∞)  
P(x):           -          +          -         +  

So P(x)>0P(x) > 0 for x(32,1)(1,)x \in (-\frac{3}{2}, -1) \cup (1, \infty)
Answer: x(32,1)(1,)x \in \left(-\frac{3}{2}, -1\right) \cup (1, \infty)

(iii) Sketch:

  • Roots at x=32,x=1,x=1x=-\frac{3}{2}, x=-1, x=1
  • As xx \to \infty, P(x)P(x) \to \infty; xx \to -\infty, P(x)P(x) \to -\infty
  • Multiplicity 1 at each root


(d) Solve and graph inequalities:

(i) x+3x5<3\frac{x+3}{x-5} < 3
Bring to zero: x+3x53<0=x+33(x5)x5

=x+33x+15x5

=2x+18x5<0\frac{x+3}{x-5} - 3 < 0 = \frac{x+3 - 3(x-5)}{x-5} = \frac{x+3-3x+15}{x-5} = \frac{-2x+18}{x-5} < 0
Critical points: x=9,x=5x=9, x=5
Sign chart:

Interval: (-∞,5) | (5,9) | (9,∞)  
Numerator: + | + | -  
Denom: - | + | +  
Fraction: - | + | -  

So 2x+18x5<0\frac{-2x+18}{x-5} < 0 when x<5x < 5 or x>9x > 9
But x=5x=5 undefined, so solution: x(,5)(9,)x \in (-\infty, 5) \cup (9, \infty)
Graph:

Number line:  
<-----o=====o----->  
      5     9  
Shade left of 5 and right of 9.  

(ii) 2x+9>5|2x+9| > 5


Equivalent to: 2x+9<52x+9 < -5 or 2x+9>52x+9 > 5
First: 2x<14  

  x<72x < -14 \implies x < -7

Second: 2x>4  

  x>22x > -4 \implies x > -2

Solution: x<7x < -7 or x>2x > -2

Graph:

<======o---------o=====>  
      -7        -2  
Shade left of -7 and right of -2.  

(e) Nature of roots of 2x2+3x4=02x^2 + \sqrt{3}x - 4 = 0
Discriminant d=b24ac=(3)24(2)(4)=3+32=35>0d = b^2 - 4ac = (\sqrt{3})^2 - 4(2)(-4) = 3 + 32 = 35 > 0, so two distinct real roots.
Answer: Two distinct real roots


(f) Solve 3x7+x=2\sqrt{3 - x} - \sqrt{7 + x} = 2

Isolate: 3x=2+7+x\sqrt{3 - x} = 2 + \sqrt{7 + x}

Square both sides:
3x=4+47+x+(7+x)3 - x = 4 + 4\sqrt{7+x} + (7+x)
3x=11+x+47+x3 - x = 11 + x + 4\sqrt{7+x}
3x11x=47+x3 - x - 11 - x = 4\sqrt{7+x}
82x=47+x-8 - 2x = 4\sqrt{7+x}

Divide by 2: 4x=27+x-4 - x = 2\sqrt{7+x}

Square again:
(4x)2=4(7+x)(-4 - x)^2 = 4(7 + x)
16+8x+x2=28+4x16 + 8x + x^2 = 28 + 4x
x2+4x12=0x^2 + 4x - 12 = 0

Factors: (x+6)(x2)=0(x+6)(x-2)=0, so x=6x=-6 or x=2x=2

Check:
For x=2x=2: 327+2=13=22\sqrt{3-2} - \sqrt{7+2} = 1 - 3 = -2 \neq 2
For x=6x=-6: 3(6)76=91=31=2\sqrt{3-(-6)} - \sqrt{7-6} = \sqrt{9} - \sqrt{1} = 3 - 1 = 2
Answer: x=6x = -6


QUESTION FIVE

(a) f(x)=x2+4f(x) = x^2 + 4, domain Df={x:2x2}D_f = \{x: -2 \leq x \leq 2\}

(i) Range: Min at x=0x=0, f(0)=4f(0)=4; max at endpoints, f(2)=f(2)=4+4=8f(-2)=f(2)=4+4=8
So range: [4,8][4, 8]
Answer: [4,8][4, 8]

(ii) One-to-one? f(1)=1+4=5f(-1)=1+4=5, f(1)=1+4=5f(1)=1+4=5, same output, not injective.
Answer: No

(iii) Inverse does not exist (not bijective).
Answer: Does not exist


(b) Polynomial x3+ax2+bx5x^3 + ax^2 + bx - 5.
Remainder when divided by x1x-1 is 1-1: f(1)=1f(1) = -1
1+a+b5=1  

  a+b4=1  

  a+b=31 + a + b - 5 = -1 \implies a + b -4 = -1 \implies a + b = 3
Remainder when divided by x+1x+1 is 5-5: f(1)=5f(-1) = -5
1+ab5=5  

  ab6=5  

  ab=1-1 + a - b - 5 = -5 \implies a - b -6 = -5 \implies a - b = 1
Solve:
a+b=3a + b = 3
ab=1a - b = 1
Add: 2a=4    a=22a = 4 \implies a=2
Then b=1b=1
Answer: a=2a=2, b=1b=1


(c) Solve 32x123x+27=03^{2x} - 12 \cdot 3^x + 27 = 0
Let u=3xu = 3^x, then u212u+27=0u^2 - 12u + 27 = 0
Factors: (u3)(u9)=0(u-3)(u-9)=0, so u=3u=3 or u=9u=9
Thus 3x=3  

  x=13^x=3 \implies x=1, 3x=9

  x=23^x=9 \implies x=2
Answer: x=1x=1 or x=2x=2


(d) Evaluate (2x1/3y1/3)6×(12x1/4y1/4)4\left(2x^{1/3} y^{1/3}\right)^6 \times \left(\frac{1}{2} x^{1/4} y^{1/4}\right)^4 at x=2x=2, y=3y=3
Simplify:
First part: (26)(x1/3)6(y1/3)6=64x2y2(2^6) (x^{1/3})^6 (y^{1/3})^6 = 64 x^{2} y^{2}

Second part: (12)4(x1/4)4(y1/4)4=116xy\left(\frac{1}{2}\right)^4 (x^{1/4})^4 (y^{1/4})^4 = \frac{1}{16} x y

Product: 64x2y2X116xy=6416x3y3=4(xy)364 x^2 y^2 \cdot \frac{1}{16} x y = \frac{64}{16} x^{3} y^{3} = 4 (xy)^3

At x=2x=2, y=3y=3:

4X(6)3=4X216

=8644 \cdot (6)^3 = 4 \cdot 216 = 864
Answer: 864


(e) Line through (4,6)(4,-6) parallel to 6x+2y+12=06x + 2y + 12 = 0
Slope of given line: 2y=6x12    y=3x62y = -6x -12 \implies y = -3x -6, slope 3-3
Parallel line has same slope.
Equation: y(6)=3(x4)y - (-6) = -3(x - 4)
y+6=3x+12y +6 = -3x +12
y=3x+6y = -3x +6
Answer: y=3x+6y = -3x + 6 or 3x+y6=03x + y - 6 = 0


(f) Solve 2x173x414=x+12\frac{2x-1}{7} - \frac{3x-4}{14} = \frac{x+1}{2}

Multiply through by 14:
2(2x1)(3x4)=7(x+1)2(2x-1) - (3x-4) = 7(x+1)
4x23x+4=7x+74x - 2 - 3x + 4 = 7x + 7
x+2=7x+7x + 2 = 7x + 7
27=7xx2 - 7 = 7x - x
5=6x-5 = 6x
x=56x = -\frac{5}{6}
Answer: x=56x = -\frac{5}{6}


(g) Differentiate f(x)=2x2xf(x) = 2x^2 - x using first principles.
Definition: f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}

f(x+h)=2(x+h)2(x+h)

=2(x2+2xh+h2)xh

=2x2+4xh+2h2xhf(x+h) = 2(x+h)^2 - (x+h) = 2(x^2 + 2xh + h^2) - x - h = 2x^2 + 4xh + 2h^2 - x - h

f(x+h)f(x)=(2x2+4xh+2h2xh)(2x2x)

=4xh+2h2h

f(x+h) - f(x) = (2x^2 + 4xh + 2h^2 - x - h) - (2x^2 - x) = 4xh + 2h^2 - h f(x+h)f(x)h=4xh+2h2hh

=4x+2h1\frac{f(x+h) - f(x)}{h} = \frac{4xh + 2h^2 - h}{h} = 4x + 2h - 1

Limit as h0h \to 0: 4x14x - 1
Answer: f(x)=4x1f'(x) = 4x - 1

@Dr. Microbiota


END OF SOLUTIONS