INTRODUCTION TO MATHEMATICAL METHODS TEST ONE JULY INTAKE 2020

DATE : 9TH OCTOBER, 2020.



Question 1


(a) Write the power set of A={a,b,{4,5}}A = \{ a, b, \{4,5\} \}.
Answer:
P(A)={,{a},{b},{{4,5}},{a,b},{a,{4,5}},{b,{4,5}},{a,b,{4,5}}}\mathcal{P}(A) = \left\{ \emptyset, \{a\}, \{b\}, \{\{4,5\}\}, \{a, b\}, \{a, \{4,5\}\}, \{b, \{4,5\}\}, \{a, b, \{4,5\}\} \right\}
Explanation:
The set AA has 3 elements: aa, bb, and the set {4,5}\{4,5\}. The power set has 23=82^3 = 8 subsets:

  • Empty set: \emptyset
  • Singletons: {a}\{a\}, {b}\{b\}, {{4,5}}\{\{4,5\}\} (since {4,5}\{4,5\} is a single element)
  • Doubletons: {a,b}\{a, b\}, {a,{4,5}}\{a, \{4,5\}\}, {b,{4,5}}\{b, \{4,5\}\}
  • The full set: {a,b,{4,5}}\{a, b, \{4,5\}\}

(b) Show that (AB)(AB)=A(A \cap B) \cup (A - B) = A.
Answer:
The equality holds by set theory.
Explanation:

  • Step 1: Partition AA into elements in BB and not in BB:
    • AB={xxA and xB}A \cap B = \{ x \mid x \in A \text{ and } x \in B \}
    • AB={xxA and xB}A - B = \{ x \mid x \in A \text{ and } x \notin B \}
  • Step 2: (AB)(AB)(A \cap B) \cup (A - B) includes all elements of AA, as every xAx \in A is either in BB (so in ABA \cap B) or not in BB (so in ABA - B).
  • Step 3: Conversely, if x(AB)(AB)x \in (A \cap B) \cup (A - B), then xAx \in A by definition.
    Thus, (AB)(AB)=A(A \cap B) \cup (A - B) = A.

(c) Prove that A(BC)=(AB)(AC)A \cup (B \cap C) = (A \cup B) \cap (A \cup C).
Answer:
The equality holds by set theory.
Explanation:
Let xx be an arbitrary element.

  • Case 1: xAx \in A
    • Left side: xA(BC)x \in A \cup (B \cap C) since AA(BC)A \subseteq A \cup (B \cap C).
    • Right side: xABx \in A \cup B and xACx \in A \cup C, so x(AB)(AC)x \in (A \cup B) \cap (A \cup C).
  • Case 2: xAx \notin A
    • Left side: xA(BC)x \in A \cup (B \cap C) iff xBCx \in B \cap C (i.e., xBx \in B and xCx \in C).
    • Right side: x(AB)(AC)x \in (A \cup B) \cap (A \cup C) iff xABx \in A \cup B and xACx \in A \cup C. Since xAx \notin A, this requires xBx \in B and xCx \in C.
      Thus, both sides are equal.

(e) If A×B={(x,3),(x,4),(x,5),(y,5),(y,4),(y,3)}A \times B = \{(x, 3), (x, 4), (x, 5), (y, 5), (y, 4), (y, 3)\}, find B×AB \times A.
Answer:
B×A={(3,x),(3,y),(4,x),(4,y),(5,x),(5,y)}B \times A = \{(3, x), (3, y), (4, x), (4, y), (5, x), (5, y)\}
Explanation:

  • From A×BA \times B:
    • First elements: x,yx, yA={x,y}A = \{x, y\}
    • Second elements: 3,4,53, 4, 5B={3,4,5}B = \{3, 4, 5\}
  • B×AB \times A is the set of ordered pairs (b,a)(b, a) where bBb \in B, aAa \in A:
    B×A={(3,x),(3,y),(4,x),(4,y),(5,x),(5,y)}B \times A = \{ (3, x), (3, y), (4, x), (4, y), (5, x), (5, y) \}

Question 2
(a) Express in the form ab\frac{a}{b} where b0b \neq 0, and a,bZa, b \in \mathbb{Z} in lowest terms.
(i) 2.6-2.6 (ii) 4.9134.913
Answer:
(i) 2.6=135-2.6 = \frac{-13}{5}
(ii) 4.913=491310004.913 = \frac{4913}{1000}
Explanation:

  • (i) Express 2.6-2.6 as a fraction in lowest terms

    The decimal 2.6-2.6 can be written as 2610-\frac{26}{10}. Simplifying this fraction by dividing both the numerator and denominator by their greatest common divisor (GCD), which is 2, gives:

    26÷210÷2=135.-\frac{26 \div 2}{10 \div 2} = -\frac{13}{5}.

    The fraction 135-\frac{13}{5} is in lowest terms because 13 and 5 are coprime (GCD is 1).

    (ii) Express 4.9134.913 as a fraction in lowest terms

    The decimal 4.9134.913 has three decimal places, so it can be written as 49131000\frac{4913}{1000}. To check if this fraction is in lowest terms, find the GCD of 4913 and 1000.

    • Factorize 1000: 1000=23×531000 = 2^3 \times 5^3.
    • Factorize 4913: 4913=17×17×17=1734913 = 17 \times 17 \times 17 = 17^3 (since 172=28917^2 = 289 and 17×289=491317 \times 289 = 4913).

    The prime factors of 4913 are 17317^3, and the prime factors of 1000 are 23×532^3 \times 5^3. Since there are no common prime factors, the GCD is 1. Thus, 49131000\frac{4913}{1000} is already in lowest terms.


(b) Given operation * on integers: ab=a2+2ba * b = a^2 + 2b.
(i) Is * a binary operation?
Answer:
Yes.
Explanation:

  • For integers a,ba, b, a2a^2 is an integer (closed under multiplication), 2b2b is an integer, and their sum is an integer. Thus, * is a binary operation.

(ii) Is * commutative?
Answer:
No.
Explanation:

  • Test with a=1,b=2a = 1, b = 2:
    • 12=12+2×2=1+4=51 * 2 = 1^2 + 2 \times 2 = 1 + 4 = 5
    • 21=22+2×1=4+2=62 * 1 = 2^2 + 2 \times 1 = 4 + 2 = 6
      Since 565 \neq 6, not commutative.

(iii) Evaluate:
(a) (3)5(-3) * 5 (b) 4(23)4 * (-2 * 3)
Answer:
(a) 1919 (b) 3636
Explanation:

  • (a) (3)5=(3)2+2×5=9+10=19(-3) * 5 = (-3)^2 + 2 \times 5 = 9 + 10 = 19
  • (b) First, 23=(2)2+2×3=4+6=10-2 * 3 = (-2)^2 + 2 \times 3 = 4 + 6 = 10
    Then, 410=42+2×10=16+20=364 * 10 = 4^2 + 2 \times 10 = 16 + 20 = 36

(c) Given A=(1,4]A = (-1, 4], B=[0,7]B = [0, 7]. Find:
(i) AcA^c (ii) ABA \cap B (iii) BAB - A
Answer:
(i) Ac=(,1](4,)A^c = (-\infty, -1] \cup (4, \infty)
(ii) AB=[0,4]A \cap B = [0, 4]
(iii) BA=(4,7]B - A = (4, 7]
Explanation:

  • Universal set: R\mathbb{R}.
  • (i) A=(1,4]={x1<x4}A = (-1, 4] = \{ x \mid -1 < x \leq 4 \}
    Ac={xx1 or x>4}=(,1](4,)A^c = \{ x \mid x \leq -1 \text{ or } x > 4 \} = (-\infty, -1] \cup (4, \infty)
  • (ii) AB={x1<x4 and 0x7}={x0x4}=[0,4]A \cap B = \{ x \mid -1 < x \leq 4 \text{ and } 0 \leq x \leq 7 \} = \{ x \mid 0 \leq x \leq 4 \} = [0, 4]
  • (iii) BA={xBxA}={x0x7 and (x1 or x>4)}B - A = \{ x \in B \mid x \notin A \} = \{ x \mid 0 \leq x \leq 7 \text{ and } (x \leq -1 \text{ or } x > 4) \}. Since x0>1x \geq 0 > -1, this simplifies to {x4<x7}=(4,7]\{ x \mid 4 < x \leq 7 \} = (4, 7].

Number Line Representation:

  • AcA^c: Shaded from -\infty to 1-1 (inclusive) and from 44 (exclusive) to \infty.
  • ABA \cap B: Shaded from 00 (inclusive) to 44 (inclusive).
  • BAB - A: Shaded from 44 (exclusive) to 77 (inclusive).

Question 3
(a) Solve:
(i) 2x32=1\left| \frac{|2x-3|}{2} \right| = 1
Answer:
x=12,52x = \frac{1}{2}, \frac{5}{2}
Explanation:

Simplify: 2x32=1\frac{|2x-3|}{2} = 1 (since absolute value ≥ 0, the case = -1 is impossible).

So 2x3=2|2x-3| = 2. ( WHEN YOU CROSS MULTIPLY)

Cases:

2x3=2 (EQUESTION 1)2x-3 = 2

2x=52x = 5

x=52x = \frac{5}{2}

2x3=2 (EQUESTION 2)2x-3 = -2

2x=12x = 1

x=12x = \frac{1}{2}


(ii) 2x3=x+1|-2x - 3| = |x + 1|
Answer:
x=2,43x = -2, -\frac{4}{3}
Explanation:

Cases:

2x3=x+1 (EQUESTION 1)-2x - 3 = x + 1

3x=4-3x = 4

x=43x = -\frac{4}{3}

2x3=(x+1) (EQUESTION 2)-2x - 3 = -(x + 1)

2x3=x1-2x - 3 = -x - 1

x=2-x = 2

x=2x = -2


(b) Solve:
(i) 2x1<9|2x - 1| < 9
Answer:
4<x<5-4 < x < 5 or x(4,5)x \in (-4, 5)
Explanation:

  • The inequality 2x1<9|2x - 1| < 9 can be rewritten as a compound inequality:

    9<2x1<9-9 < 2x - 1 < 9

    Add 1 to all parts:

    9+1<2x1+1<9+1-9 + 1 < 2x - 1 + 1 < 9 + 1

= −8<2x<10-8 < 2x < 10

Divide all parts by 2:

82<2x2<102\frac{-8}{2} < \frac{2x}{2} < \frac{10}{2}

= −4<x<5-4 < x < 5

The solution is all xx such that 4<x<5-4 < x < 5.

To verify:

  • At x=0x = 0 (within the interval), 2(0)1=1=1<9|2(0) - 1| = |-1| = 1 < 9.
  • At x=5x = 5 (endpoint), 2(5)1=101=9|2(5) - 1| = |10 - 1| = 9, which is not less than 9, so excluded.
  • At x=4x = -4 (endpoint), 2(4)1=81=9=9|2(-4) - 1| = |-8 - 1| = |-9| = 9, which is not less than 9, so excluded.
  • At x=6x = 6 (outside), 2(6)1=121=11>9|2(6) - 1| = |12 - 1| = 11 > 9.
  • At x=5x = -5 (outside), 2(5)1=101=11=11>9|2(-5) - 1| = |-10 - 1| = |-11| = 11 > 9.

Thus, the solution is 4<x<5-4 < x < 5.

-4 < x < 5

(ii) 3x+12x+3|3x + 1| \geq |2x + 3|
Answer:
x45x \leq -\frac{4}{5} or x2x \geq 2 or x(,45][2,)x \in (-\infty, -\frac{4}{5}] \cup [2, \infty)
Explanation:

  • Square both sides (valid as both ≥ 0):
    (3x+1)2(2x+3)2(3x + 1)^2 \geq (2x + 3)^2
    9x2+6x+14x2+12x+99x^2 + 6x + 1 \geq 4x^2 + 12x + 9
    5x26x805x^2 - 6x - 8 \geq 0
  • Solve 5x26x8=05x^2 - 6x - 8 = 0:
  • x=6±(6)245(8)10
  • =6±19610
  • =6±1410x = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 5 \cdot (-8)}}{10} = \frac{6 \pm \sqrt{196}}{10} = \frac{6 \pm 14}{10}
    x=2,   OR      x= −810=45x = 2, -\frac{8}{10} = -\frac{4}{5}
  • Parabola 5x26x85x^2 - 6x - 8 opens upwards, so ≥ 0 when x45x \leq -\frac{4}{5} or x2x \geq 2.

Question 4
(a) Domain and Range:
(i) y=5x7y = 5x - 7
Answer:

Explanation

The function y=5x7y = 5x - 7 is a linear function with no restrictions (such as division by zero or square roots of negative numbers). Therefore:

  • Domain: The set of all real numbers for which the function is defined. Since there are no restrictions, the domain is all real numbers, denoted in interval notation as (,)(-\infty, \infty).

  • Range: The set of all possible output values. As a linear function with a non-zero slope (slope = 5), the function can produce any real number as output. Thus, the range is also all real numbers, denoted as (,)(-\infty, \infty).

Domain: (, )Range: (, )

  • Polynomial → domain all reals. Linear function → range all reals.

(ii) y=x23x+2y = x^2 - 3x + 2

Answer:
Domain: R\mathbb{R}, Range: [14,)[-\frac{1}{4}, \infty)
Explanation:

  • Domain: all reals (polynomial).
  • Vertex at x=32x = \frac{3}{2}:
    y=(32)2332+2=9492+2=918+84=14y = \left(\frac{3}{2}\right)^2 - 3 \cdot \frac{3}{2} + 2 = \frac{9}{4} - \frac{9}{2} + 2 = \frac{9 - 18 + 8}{4} = -\frac{1}{4}
  • Parabola opens upwards → range [14,)[-\frac{1}{4}, \infty).

OR SAY

The function y=x23x+2y = x^2 - 3x + 2 is a quadratic polynomial.

Domain:

Polynomial functions are defined for all real numbers. Therefore, the domain is (,)(-\infty, \infty).

Range:

The quadratic function y=x23x+2y = x^2 - 3x + 2 has a positive leading coefficient (coefficient of x2x^2 is 1), so the parabola opens upwards. The vertex represents the minimum point.

The x-coordinate of the vertex is given by x=b2ax = -\frac{b}{2a}, where a=1a = 1 and b=3b = -3:

x=321=32=1.5.x = -\frac{-3}{2 \cdot 1} = \frac{3}{2} = 1.5.

Substitute x=1.5x = 1.5 into the function to find the y-coordinate:

y=(1.5)23(1.5)+2=2.254.5+2=0.25=14.y = (1.5)^2 - 3(1.5) + 2 = 2.25 - 4.5 + 2 = -0.25 = -\frac{1}{4}.

Since the parabola opens upwards, the minimum value of yy is 14-\frac{1}{4}, and

yy increases without bound as xx approaches ±\pm \infty. Therefore, the range is [14,)\left[ -\frac{1}{4}, \infty \right).

Domain: (, )Range: [14, )


(iii) f(x)=16x2f(x) = \sqrt{16 - x^2}
Answer:
Domain: [4,4][-4, 4], Range: [0,4][0, 4]
Explanation:

16x2016 - x^2 \geq 0

x216x^2 \leq 16

4x4-4 \leq x \leq 4.

0\sqrt{\cdot} \geq 0; max at x=0x = 0: f(0)=4f(0) = 4; min at x=±4x = \pm 4: f(±4)=0f(\pm 4) = 0.

OR USE THIS BELOW

Domain

The function is f(x)=16x2f(x) = \sqrt{16 - x^2}. The expression under the square root, 16x216 - x^2, must be non-negative for the function to be defined. Therefore:

16x2016 - x^2 \geq 0

Solving the inequality:

x216x^2 \leq 16

x4|x| \leq 4

4x4-4 \leq x \leq 4

Thus, the domain is the closed interval [4,4][-4, 4].

Range

The square root function outputs non-negative values, so f(x)0f(x) \geq 0. The expression 16x216 - x^2 ranges from 0 to 16 as xx varies over [4,4][-4, 4]:

  • When x=±4x = \pm 4, f(±4)=1616=0=0f(\pm 4) = \sqrt{16 - 16} = \sqrt{0} = 0.
  • When x=0x = 0, f(0)=160=16=4f(0) = \sqrt{16 - 0} = \sqrt{16} = 4.

Since f(x)f(x) is continuous, and it achieves all values between 0 and 4

(e.g., for f(x)=2f(x) = 2, solve 16x2=2\sqrt{16 - x^2} = 2, which gives 16x2=416 - x^2 = 4,

so x2=12x^2 = 12, and x=±23x = \pm 2\sqrt{3}, which are in [4,4][-4, 4]), the range is the closed interval [0,4][0, 4].

Final Answer

Domain: [4, 4]Range: [0, 4]


(iv) f(x)=3x3f(x) = \frac{3}{x-3}
Answer:
Domain: R{3}\mathbb{R} \setminus \{3\}, Range: R{0}\mathbb{R} \setminus \{0\}
Explanation:

  • Denominator ≠ 0 → domain x3x \neq 3.
  • Solve for xx: y=3x3y = \frac{3}{x-3}x=3+3yx = 3 + \frac{3}{y}, defined for all y0y \neq 0.

OR USE THIS BELOW

Domain

The function is f(x)=3x3f(x) = \frac{3}{x-3}. The denominator x3x - 3 cannot be zero, as division by zero is undefined. Solving x3=0x - 3 = 0 gives x=3x = 3. Thus, the domain excludes x=3x = 3 and includes all other real numbers. In interval notation, the domain is (,3)(3,)(-\infty, 3) \cup (3, \infty).

Range

To find the range, solve for xx in terms of yy, where y=f(x)y = f(x):

y=3x3y = \frac{3}{x-3}

Rearranging gives:

y(x3)=3

y(x - 3) = 3 yx3y=3

yx - 3y = 3 yx=3+3y

yx = 3 + 3y x=3+3yy=3(1+1y),y0x = \frac{3 + 3y}{y} = 3\left(1 + \frac{1}{y}\right), \quad y \neq 0

The value y=0y = 0 is not possible because 3x3=0\frac{3}{x-3} = 0 implies 3=03 = 0, which is a contradiction. For any y0y \neq 0, the corresponding xx is defined and x3x \neq 3 (since x=3+3yx = 3 + \frac{3}{y} and 3y0\frac{3}{y} \neq 0). Thus, the range is all real numbers except zero. In interval notation, the range is (,0)(0,)(-\infty, 0) \cup (0, \infty).

Verification

  • As xx approaches 3 from the right, f(x)f(x) approaches \infty.
  • As xx approaches 3 from the left, f(x)f(x) approaches -\infty.
  • As xx approaches \infty or -\infty, f(x)f(x) approaches 0 but never reaches it.
  • The function takes all other real values (e.g., f(6)=1f(6) = 1, f(0)=1f(0) = -1, f(9)=0.5f(9) = 0.5).

Domain: (, 3)(3, )Range: (, 0)(0, )


(b) (i) Show f(x)=x+3x2f(x) = \frac{x+3}{x-2} is one-to-one.


Answer:
Assume f(a)=f(b)f(a) = f(b):
a+3a2=b+3b2\frac{a+3}{a-2} = \frac{b+3}{b-2}
Cross-multiply:
(a+3)(b2)=(b+3)(a2)(a+3)(b-2) = (b+3)(a-2)
ab2a+3b6=ab2b+3a6ab - 2a + 3b - 6 = ab - 2b + 3a - 6
2a+3b=3a2b-2a + 3b = 3a - 2b
5b=5a5b = 5a
a=ba = b
Thus, injective (one-to-one).

OR USE THIS BELOW

To show that the function f(x)=x+3x2f(x) = \frac{x+3}{x-2} is one-to-one, it must be proven that if f(a)=f(b)f(a) = f(b), then a=ba = b, for all aa and bb in the domain of ff.

The domain of ff is all real numbers except x=2x = 2, since the denominator cannot be zero. Thus, a2a \neq 2 and b2b \neq 2.

Assume f(a)=f(b)f(a) = f(b). Then:

a+3a2=b+3b2\frac{a+3}{a-2} = \frac{b+3}{b-2}

Cross-multiplying gives:

(a+3)(b2)=(b+3)(a2)(a+3)(b-2) = (b+3)(a-2)

Expanding both sides:

  • Left side: (a+3)(b2)=ab2a+3b6(a+3)(b-2) = ab - 2a + 3b - 6
  • Right side: (b+3)(a2)=ab2b+3a6(b+3)(a-2) = ab - 2b + 3a - 6

So the equation is:

ab2a+3b6=ab2b+3a6ab - 2a + 3b - 6 = ab - 2b + 3a - 6

Subtract abab and add 6 to both sides:

2a+3b=2b+3a-2a + 3b = -2b + 3a

Bring all terms to one side:

2a+3b+2b3a=0-2a + 3b + 2b - 3a = 0 5a+5b=0-5a + 5b = 0

Factor out 5:

5(a+b)=05(-a + b) = 0 a+b=0-a + b = 0 b=ab = a

Thus, f(a)=f(b)f(a) = f(b) implies a=ba = b, which proves that ff is one-to-one.



(ii) Sketch y=2x1y = 2 - \sqrt{x - 1}
Answer:

  • Domain: x1x \geq 1
  • Key Points:
    • x=1x = 1: y=20=2y = 2 - \sqrt{0} = 2 → point (1,2)
    • x=2x = 2: y=21=1y = 2 - \sqrt{1} = 1 → point (2,1)
    • x=5x = 5: y=24=0y = 2 - \sqrt{4} = 0 → point (5,0)
    • x=10x = 10: y=29=1y = 2 - \sqrt{9} = -1 → point (10,-1)
  • Shape: Starts at (1,2), decreases slowly then rapidly. Reflection of y=xy = \sqrt{x} over x-axis, shifted right 1, up 2.

Graph Sketch:

  • Axes: x from 0 to 11, y from -2 to 3.
  • Curve begins at (1,2), passes through (2,1), (5,0), (10,-1), decreasing and concave up.

Question 5
(a) (i) Given f(x)=4x3f(x) = 4x - 3, g(x)=x+34g(x) = \frac{x+3}{4}, solve fg(x)=gf(x)=xf \circ g(x) = g \circ f(x) = x.
Answer:
Holds for all xRx \in \mathbb{R}.
Explanation:

fg(x)=f(x+34)=4Xx+343

=x+33

fg(x)= xfg(x)=fg(x)=fg(x)=fg(x)=f \circ g(x) = f\left( \frac{x+3}{4} \right) = 4 \cdot \frac{x+3}{4} - 3 = x + 3 - 3 = x

gf(x)=g(4x3)=(4x3)+34

=4x4

=xg \circ f(x) = g(4x - 3) = \frac{(4x - 3) + 3}{4} = \frac{4x}{4} = x
Thus, fg(x)=gf(x)=xf \circ g(x) = g \circ f(x) = x for all real xx.

(ii) Given f(x)=3x2+x2f(x) = 3x^2 + x - 2, g(x)=x+1g(x) = x + 1, solve fg(x)=0f \circ g(x) = 0.
Answer:
x=2,13x = -2, -\frac{1}{3}
Explanation:

fg(x)=f(x+1)=3(x+1)2+(x+1)2

=3(x2+2x+1)+x+12

=3x2+6x+3+x1

=3x2+7x+2f \circ g(x) = f(x + 1) = 3(x + 1)^2 + (x + 1) - 2 = 3(x^2 + 2x + 1) + x + 1 - 2 = 3x^2 + 6x + 3 + x - 1 = 3x^2 + 7x + 2

Set equal to 0:
3x2+7x+2=03x^2 + 7x + 2 = 0


x=7±49246

=7±56x = \frac{ -7 \pm \sqrt{49 - 24} }{6} = \frac{ -7 \pm 5 }{6}
x=26=13,x=126=2x = \frac{-2}{6} = -\frac{1}{3}, \quad x = \frac{-12}{6} = -2


(b) Find inverse of f(x)=xf(x) = \sqrt{x} (x0x \geq 0). Sketch ff and f1f^{-1}.
Answer:
Inverse: f1(x)=x2f^{-1}(x) = x^2 (x0x \geq 0)
Explanation:

  • Let y=xy = \sqrt{x}y0y \geq 0, x=y2x = y^2.
  • Thus, f1(x)=x2f^{-1}(x) = x^2 for x0x \geq 0.
  • Graphs:
    • f(x)=xf(x) = \sqrt{x}: Starts at (0,0), passes through (1,1), (4,2). Concave down.
    • f1(x)=x2f^{-1}(x) = x^2: Starts at (0,0), passes through (1,1), (2,4). Concave up.
  • Symmetric about line y=xy = x.

Graph Sketch:

  • Axes: x and y from 0 to 5.
  • y=xy = \sqrt{x}: Curve from (0,0) to (4,2).
  • y=x2y = x^2: Curve from (0,0) to (2,4).
  • Line y=xy = x: Diagonal.

Question 6
(a) Find kk such that kx2+4x+(3+k)=0kx^2 + 4x + (3 + k) = 0 has no real roots.
Answer:
k<4k < -4 or k>1k > 1 or k(,4)(1,)k \in (-\infty, -4) \cup (1, \infty)
Explanation:

  • Discriminant D<0D < 0:
    D=424k(k+3)=164k212kD = 4^2 - 4 \cdot k \cdot (k + 3) = 16 - 4k^2 - 12k
  • Set D<0D < 0:
    164k212k<016 - 4k^2 - 12k < 0
    4k212k+16<0-4k^2 - 12k + 16 < 0
    Multiply by -1 (reverse inequality):
    4k2+12k16>04k^2 + 12k - 16 > 0
    Divide by 4:
    k2+3k4>0k^2 + 3k - 4 > 0
  • Roots: k=3±9+162=3±52k = \frac{ -3 \pm \sqrt{9 + 16} }{2} = \frac{ -3 \pm 5 }{2}k=1,4k = 1, -4
  • Parabola opens upwards → positive when k<4k < -4 or k>1k > 1.

(b) If α,β\alpha, \beta are roots of x2+2x3=0x^2 + 2x - 3 = 0, find αβ+βα\frac{\alpha}{\beta} + \frac{\beta}{\alpha}.
Answer:
103-\frac{10}{3}
Explanation:

Sum α+β=2\alpha + \beta = -2, product αβ=3\alpha \beta = -3.

αβ+βα=α2+β2αβ

=(α+β)22αβαβ

=(2)22(3)3

=4+63

=103

=103\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha \beta} = \frac{ (\alpha + \beta)^2 - 2\alpha \beta }{ \alpha \beta } = \frac{ (-2)^2 - 2(-3) }{ -3 } = \frac{4 + 6}{-3} = \frac{10}{-3} = -\frac{10}{3}


Question 7
(a) Expression 3x3+2x2bx+a3x^3 + 2x^2 - b x + a divisible by (x1)(x-1), remainder 10 when divided by (x+1)(x+1). Find a,ba, b.
Answer:
a=3a = 3, b=8b = 8
Explanation:

  • Divisible by (x1)(x-1) → at x=1x = 1:
    3(1)3+2(1)2b(1)+a=3+2b+a=5b+a=0(1)3(1)^3 + 2(1)^2 - b(1) + a = 3 + 2 - b + a = 5 - b + a = 0 \quad \text{(1)}
  • Remainder 10 when divided by (x+1)(x+1) → at x=1x = -1:
    3(1)3+2(1)2b(1)+a=3+2+b+a=1+a+b=10(2)3(-1)^3 + 2(-1)^2 - b(-1) + a = -3 + 2 + b + a = -1 + a + b = 10 \quad \text{(2)}
  • Solve system:
    From (1): ab=5a - b = -5
    From (2): a+b=11a + b = 11
    Add: 2a=62a = 6a=3a = 3
    Substitute: 3+b=113 + b = 11b=8

OR USE THIS BELOW

Let’s solve this step by step.


🧮 Given:

The polynomial:

p(x)=3x3+2x2bx+ap(x) = 3x^3 + 2x^2 - bx + a

  • It is divisible by (x1)2(x - 1)^2, so:

    • p(1)=0p(1) = 0
    • p(1)=0p'(1) = 0
  • It leaves remainder 10 when divided by (x+1)2(x + 1)^2, so:

    • p(1)=10p(-1) = 10

✏️ Step 1: Use p(1)=0p(1) = 0

Substitute x=1x = 1:

p(1)=3(1)3+2(1)2b(1)+a=3+2b+a=5b+ap(1) = 3(1)^3 + 2(1)^2 - b(1) + a = 3 + 2 - b + a = 5 - b + a

Set equal to 0:

5b+a=0a=b5(Equation ①)5 - b + a = 0 \quad \Rightarrow \quad a = b - 5 \quad \text{(Equation ①)}


✏️ Step 2: Use p(1)=0p'(1) = 0

Differentiate:

p(x)=9x2+4xbp'(x) = 9x^2 + 4x - b

Substitute x=1x = 1:

p(1)=9(1)2+4(1)b=9+4b=13bp'(1) = 9(1)^2 + 4(1) - b = 9 + 4 - b = 13 - b

Set equal to 0:

13b=0b=13(Equation ②)13 - b = 0 \quad \Rightarrow \quad b = 13 \quad \text{(Equation ②)}


✏️ Step 3: Use p(1)=10p(-1) = 10

Substitute x=1x = -1:

p(1)=3(1)3+2(1)2b(1)+a=3+2+b+a=1+b+ap(-1) = 3(-1)^3 + 2(-1)^2 - b(-1) + a = -3 + 2 + b + a = -1 + b + a

Set equal to 10:

1+b+a=10b+a=11(Equation ③)-1 + b + a = 10 \quad \Rightarrow \quad b + a = 11 \quad \text{(Equation ③)}


✅ Final Step: Solve system

From Equation ②: b=13b = 13
Substitute into Equation ①:

a=135=8a = 13 - 5 = 8


📌 Final Answer:

a=8,b=13

b = 8


(b) Given f(x)=x3x24x+4f(x) = x^3 - x^2 - 4x + 4.
(i) Solve f(x)<0f(x) < 0.
Answer:
x<2x < -2 or 1<x<21 < x < 2 or x(,2)(1,2)x \in (-\infty, -2) \cup (1, 2)
Explanation:

  • Factorize:
    • Root x=1x = 1: f(1)=114+4=0f(1) = 1 - 1 - 4 + 4 = 0
    • Synthetic division:
      11144104\begin{array}{c|cccc} 1 & 1 & -1 & -4 & 4 \\ \hline & & 1 & 0 & -4 \\ \end{array}
      f(x)=(x1)(x24)=(x1)(x2)(x+2)f(x) = (x - 1)(x^2 - 4) = (x - 1)(x - 2)(x + 2)
  • Sign analysis:
    Interval (,2)(-\infty, -2) (2,1)(-2, 1) (1,2)(1, 2) (2,)(2, \infty)
    (x+2)(x + 2) - + + +
    (x1)(x - 1) - - + +
    (x2)(x - 2) - - - +
    Product - + - +
  • f(x)<0f(x) < 0 when negative: (,2)(-\infty, -2) and (1,2)(1, 2).

OR USE THIS BELOW

To solve the inequality

f(x)=x3x24x+4<0f(x) = x^3 - x^2 - 4x + 4 < 0

we’ll follow a structured approach:


✏️ Step 1: Factor the cubic expression

We try rational root theorem or factor by grouping:

Group terms:

f(x)=(x3x2)(4x4)=x2(x1)4(x1)f(x) = (x^3 - x^2) - (4x - 4) = x^2(x - 1) - 4(x - 1)

Factor:

f(x)=(x1)(x24)=(x1)(x2)(x+2)f(x) = (x - 1)(x^2 - 4) = (x - 1)(x - 2)(x + 2)


📌 Step 2: Solve the inequality

We want:

(x1)(x2)(x+2)<0(x - 1)(x - 2)(x + 2) < 0


📊 Step 3: Sign chart analysis

Critical points: x=2, 1, 2x = -2,\ 1,\ 2

Test intervals:

Interval Test Point Sign of Expression
x<2x < -2 x=3x = -3 ()()()(-)(-)(-) =
2<x<1-2 < x < 1 x=0x = 0 ()()(+)(-)(-)(+) = +
1<x<21 < x < 2 x=1.5x = 1.5 (+)()(+)(+)(-)(+) =
x>2x > 2 x=3x = 3 (+)(+)(+)(+)(+)(+) = +

We want where the expression is negative:

  • x<2x < -2
  • 1<x<2

1 < x ✅ Final Answer:

x(, 2)(1, 2)


(ii) Sketch graph of f(x)f(x).
Explanation:

  • Cubic, positive leading coefficient.
  • Roots at x=2,1,2x = -2, 1, 2.
  • Behavior:
    • As xx \to \infty, f(x)f(x) \to \infty; xx \to -\infty, f(x)f(x) \to -\infty.
    • Local max/min: Use sign chart or derivative (not required), but from (i):
      • Positive in (2,1)(2,)(-2, 1) \cup (2, \infty)
      • Negative in (,2)(1,2)(-\infty, -2) \cup (1, 2)
  • Sketch:
    • Crosses x-axis at -2, 1, 2.
    • From left: below x-axis, crosses up at x=-2, above in (-2,1), crosses down at x=1, below in (1,2), crosses up at x=2, above for x>2.

  • Roots clearly marked at x=2,1,2x = -2, 1, 2
  • 📈 Positive regions shaded green: (2,1)(2,)(-2, 1) \cup (2, \infty)
  • 📉 Negative regions shaded orange: (,2)(1,2)(-\infty, -2) \cup (1, 2)
  • 🔁 Cubic behavior: rises to ++\infty as xx \to \infty, falls to -\infty as xx \to -\infty

You’ll see the function:

  • Starts below the x-axis, crosses up at x=2x = -2
  • Stays positive until x=1x = 1, then dips negative until x=2x = 2
  • Rises again above the axis for x>2

(c) Partial fractions:
(i) 3x23x1(x21)(x1)\frac{3x^2 - 3x - 1}{(x^2 - 1)(x - 1)}
Answer:
74(x1)12(x1)2+54(x+1)\frac{7}{4(x-1)} - \frac{1}{2(x-1)^2} + \frac{5}{4(x+1)}
Explanation:

  • Denominator: (x21)(x1)=(x1)2(x+1)(x^2 - 1)(x - 1) = (x-1)^2 (x+1)
  • Set up:
    3x23x1(x1)2(x+1)=Ax1+B(x1)2+Cx+1\frac{3x^2 - 3x - 1}{(x-1)^2 (x+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1}
  • Multiply by denominator:
    3x23x1=A(x1)(x+1)+B(x+1)+C(x1)23x^2 - 3x - 1 = A(x-1)(x+1) + B(x+1) + C(x-1)^2
  • Expand:
    A(x21)+B(x+1)+C(x22x+1)=(A+C)x2+(B2C)x+(A+B+C)A(x^2 - 1) + B(x + 1) + C(x^2 - 2x + 1) = (A + C)x^2 + (B - 2C)x + (-A + B + C)
  • Equate coefficients:
    • A+C=3A + C = 3
    • B2C=3B - 2C = -3
    • A+B+C=1-A + B + C = -1
  • Solve:
    From (1): C=3AC = 3 - A
    From (2): B=3+2(3A)=32AB = -3 + 2(3 - A) = 3 - 2A
    Plug into (3): A+(32A)+(3A)=1-A + (3 - 2A) + (3 - A) = -14A+6=1-4A + 6 = -14A=7-4A = -7A=74A = \frac{7}{4}
    Then C=374=54C = 3 - \frac{7}{4} = \frac{5}{4}, B=3274=372=12B = 3 - 2 \cdot \frac{7}{4} = 3 - \frac{7}{2} = -\frac{1}{2}
  • Thus:
    7/4x1+1/2(x1)2+5/4x+1=74(x1)12(x1)2+54(x+1)\frac{7/4}{x-1} + \frac{-1/2}{(x-1)^2} + \frac{5/4}{x+1} = \frac{7}{4(x-1)} - \frac{1}{2(x-1)^2} + \frac{5}{4(x+1)}

OR USE THIS BELOW

Let’s break this down and express the rational function

3x23x1(x21)(x1)\frac{3x^2 - 3x - 1}{(x^2 - 1)(x - 1)}

as partial fractions.


✏️ Step 1: Factor the denominator

We have:

  • x21=(x1)(x+1)x^2 - 1 = (x - 1)(x + 1)

So the full denominator becomes:

(x1)2(x+1)(x - 1)^2(x + 1)


🧩 Step 2: Set up partial fractions

Since the denominator has a repeated linear factor (x1)2(x - 1)^2 and a distinct linear factor (x+1)(x + 1), we write:

3x23x1(x1)2(x+1)=Ax1+B(x1)2+Cx+1\frac{3x^2 - 3x - 1}{(x - 1)^2(x + 1)} = \frac{A}{x - 1} + \frac{B}{(x - 1)^2} + \frac{C}{x + 1}


🧮 Step 3: Multiply both sides by the denominator

Multiply through by (x1)2(x+1)(x - 1)^2(x + 1):

3x23x1=A(x1)(x+1)+B(x+1)+C(x1)23x^2 - 3x - 1 = A(x - 1)(x + 1) + B(x + 1) + C(x - 1)^2


✏️ Step 4: Choose smart values for xx

Let x=1x = 1:

3(1)23(1)1=A(0)(2)+B(2)+C(0)2

1=2B

B=123(1)^2 - 3(1) - 1 = A(0)(2) + B(2) + C(0)^2 \Rightarrow -1 = 2B \Rightarrow B = -\frac{1}{2}

Let x=1x = -1:

3(1)23(1)1=A(2)(0)+B(0)+C(2)2

3+31=4C

C=543(-1)^2 - 3(-1) - 1 = A(-2)(0) + B(0) + C(-2)^2 \Rightarrow 3 + 3 - 1 = 4C \Rightarrow C = \frac{5}{4}

Let x=0x = 0:

001=A(1)(1)+B(1)+C(1)2

1=A+B+C0 - 0 - 1 = A(-1)(1) + B(1) + C(1)^2 \Rightarrow -1 = -A + B + C

Substitute known values:

1=A12+54

1=A+34

A=74

A=74

-1 = -A - \frac{1}{2} + \frac{5}{4} \Rightarrow -1 = -A + \frac{3}{4} \Rightarrow -A = -\frac{7}{4} \Rightarrow A = \frac{7}{4}

✅ Final Answer:

3x23x1(x21)(x1)=74(x1)12(x1)2+54(x+1)


(ii) x2+x+2(x2+1)(x+1)\frac{x^2 + x + 2}{(x^2 + 1)(x + 1)}
Answer:
1x+1+1x2+1\frac{1}{x+1} + \frac{1}{x^2 + 1}
Explanation:

  • Set up:
    x2+x+2(x2+1)(x+1)=Ax+Bx2+1+Cx+1\frac{x^2 + x + 2}{(x^2 + 1)(x + 1)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{x+1}
  • Multiply by denominator:
    x2+x+2=(Ax+B)(x+1)+C(x2+1)x^2 + x + 2 = (Ax + B)(x + 1) + C(x^2 + 1)
  • Expand:
    (Ax+B)(x+1)=Ax2+Ax+Bx+B(Ax + B)(x + 1) = Ax^2 + Ax + Bx + B
    +Cx2+C=(A+C)x2+(A+B)x+(B+C)+ Cx^2 + C = (A + C)x^2 + (A + B)x + (B + C)
  • Equate coefficients:
    • A+C=1A + C = 1
    • A+B=1A + B = 1
    • B+C=2B + C = 2
  • Solve:
    From (1): C=1AC = 1 - A
    From (2): B=1AB = 1 - A
    Plug into (3): (1A)+(1A)=2(1 - A) + (1 - A) = 222A=22 - 2A = 22A=0-2A = 0A=0A = 0
    Then B=1B = 1, C=1C = 1
  • Thus:
    0x+1x2+1+1x+1=1x+1+1x2+1


OR USE THIS BELOW

\frac{0 \cdot x + 1}{x^2 + 1} + \frac{1}{x+1} = \frac{1}{x+1} + \frac{1}{x^2 + 1}

Let’s decompose the rational expression

x2+x+2(x2+1)(x+1)\frac{x^2 + x + 2}{(x^2 + 1)(x + 1)}

into partial fractions.


✏️ Step 1: Denominator structure

  • x2+1x^2 + 1 is irreducible over the reals.
  • x+1x + 1 is a linear factor.

So we use the form:

x2+x+2(x2+1)(x+1)=Ax+Bx2+1+Cx+1\frac{x^2 + x + 2}{(x^2 + 1)(x + 1)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{x + 1}


🧮 Step 2: Multiply both sides by the denominator

Multiply through by (x2+1)(x+1)(x^2 + 1)(x + 1):

x2+x+2=(Ax+B)(x+1)+C(x2+1)x^2 + x + 2 = (Ax + B)(x + 1) + C(x^2 + 1)


✏️ Step 3: Expand both sides

Expand RHS:

  • (Ax+B)(x+1)=Ax2+Ax+Bx+B=Ax2+(A+B)x+B(Ax + B)(x + 1) = Ax^2 + Ax + Bx + B = Ax^2 + (A + B)x + B
  • C(x2+1)=Cx2+CC(x^2 + 1) = Cx^2 + C

Add both:

RHS=(A+C)x2+(A+B)x+(B+C)RHS = (A + C)x^2 + (A + B)x + (B + C)


🧩 Step 4: Match coefficients

Compare:

x2+x+2=(A+C)x2+(A+B)x+(B+C)x^2 + x + 2 = (A + C)x^2 + (A + B)x + (B + C)

Match terms:

  • A+C=1A + C = 1   (①)
  • A+B=1A + B = 1   (②)
  • B+C=2B + C = 2   (③)

🧮 Step 5: Solve the system

From (①): C=1AC = 1 - A
From (②): B=1AB = 1 - A
Substitute into (③):

(1A)+(1A)=222A=2A=0(1 - A) + (1 - A) = 2 \Rightarrow 2 - 2A = 2 \Rightarrow A = 0

Then:

  • B=1B = 1
  • C=1C = 1

✅ Final Answer:

x2+x+2(x2+1)(x+1)=1x2+1+1x+1

@Dr. Microbiota


END OF SOLUTIONS