INTRODUCTION TO MATHEMATICAL METHODS

QUIZ ONE JULY INTAKE 2023

DATE : 11th August, 2023

INSTRUCTIONS

  1. Duration: 30 min.
  2. Write your Computer Number on each answer paper used. Answer all questions and show all the necessary work to earn full marks.

QUESTION ONE

(a) Write set B={an:an+1=3an,nN,a1=2}B = \{a_n : a_{n+1} = 3a_n, n \in \mathbb{N}, a_1 = 2\} in Roster form.
Solution:

  • a1=2a_1 = 2
  • a2=3×2=6a_2 = 3 \times 2 = 6
  • a3=3×6=18a_3 = 3 \times 6 = 18
  • a4=3×18=54a_4 = 3 \times 18 = 54
  • ...
    So B={2,6,18,54,}B = \{2, 6, 18, 54, \ldots\}.

(b) Write set D={5,25,125,625,}D = \{5, 25, 125, 625, \ldots\} in set-builder form.
Solution:
D={5nnN}D = \{5^n \mid n \in \mathbb{N}\}.

(c) If AA is empty, show P(P(P(A)))P(P(P(A))) has 4 elements.
Solution:

  • A=A = \emptyset
  • P(A)={}P(A) = \{\emptyset\} (1 element)
  • P(P(A))=P({})={,{}}P(P(A)) = P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\} (2 elements)
  • P(P(P(A)))=P({,{}})={,{},{{}},{,{}}}P(P(P(A))) = P(\{\emptyset, \{\emptyset\}\}) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} (4 elements).

QUESTION TWO

(a) Express 12.323112.3231 as ab\frac{a}{b} (coprime).
Solution:
12.3231=1232311000012.3231 = \frac{123231}{10000}, GCD(123231,10000)=1.
Final Answer: 12323110000\frac{123231}{10000}

(b) Survey: 200 students, chatrooms: skateboarding (S), bicycling (B), college (C).

  • n(S)=90n(S) = 90, n(B)=50n(B) = 50, n(C)=70n(C) = 70
  • n(SC)=15n(S \cap C) = 15, n(BC)=12n(B \cap C) = 12, n(SB)=25n(S \cap B) = 25, n(SBC)=10n(S \cap B \cap C) = 10
  • None: ?

(i) n(SB)n(S \cup B)

Solution:

n(SB)=n(S)+n(B)n(SB)

=90+5025

=115n(S \cup B) = n(S) + n(B) - n(S \cap B) = 90 + 50 - 25 = 115



(ii) None

SOLUTION

n(SBC)=n(S)+n(B)+n(C)n(SB)n(SC)n(BC)+n(SBC)n(S \cup B \cup C) = n(S) + n(B) + n(C) - n(S \cap B) - n(S \cap C) - n(B \cap C) + n(S \cap B \cap C) =90+50+70251512+10=168= 90 + 50 + 70 - 25 - 15 - 12 + 10 = 168

None: 200168=32200 - 168 = 32.


@Dr. Microbiota


END OF SOLUTIONS