INTRODUCTION TO MATHEMATICAL METHODS TEST TWO JULY INTAKE 2023

DATE : 12th OCTOBER 2023



QUESTION ONE

(a) Express the following as partial fractions

(i)

5x1(x+1)(x2)\frac{5x-1}{(x+1)(x-2)}

Answer:

5x1(x+1)(x2)=2x+1+3x2\frac{5x-1}{(x+1)(x-2)} = \frac{2}{x+1} + \frac{3}{x-2}

SOLUTION:
Assume:

5x1(x+1)(x2)=Ax+1+Bx2\frac{5x-1}{(x+1)(x-2)} = \frac{A}{x+1} + \frac{B}{x-2}

Multiply both sides by (x+1)(x2)(x+1)(x-2):

5x1=A(x2)+B(x+1)5x - 1 = A(x-2) + B(x+1)

Expand:

5x1=(A+B)x+(2A+B)5x - 1 = (A + B)x + (-2A + B)

Equate coefficients:

  • xx terms: A+B=5A + B = 5
  • Constant terms: 2A+B=1-2A + B = -1
    Solve the system:
    From A+B=5A + B = 5 and 2A+B=1-2A + B = -1, subtract the second equation from the first:

(A+B)(2A+B)

=5(1)  

  3A=6  

  A=2(A + B) - (-2A + B) = 5 - (-1) \implies 3A = 6 \implies A = 2

Substitute A=2A = 2 into A+B=5A + B = 5:

2+B=5  

  B=32 + B = 5 \implies B = 3

Thus:

5x1(x+1)(x2)=2x+1+3x2\frac{5x-1}{(x+1)(x-2)} = \frac{2}{x+1} + \frac{3}{x-2}


(ii)

x22x1(x1)2(x2+1)\frac{x^2 - 2x - 1}{(x-1)^2(x^2 + 1)}


Answer:

x22x1(x1)2(x2+1)=1x11(x1)2+1xx2+1\frac{x^2 - 2x - 1}{(x-1)^2(x^2 + 1)} = \frac{1}{x-1} - \frac{1}{(x-1)^2} + \frac{1 - x}{x^2 + 1}

Explanation:
Assume:

x22x1(x1)2(x2+1)=Ax1+B(x1)2+Cx+Dx2+1\frac{x^2 - 2x - 1}{(x-1)^2(x^2 + 1)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{Cx + D}{x^2 + 1}

Multiply both sides by (x1)2(x2+1)(x-1)^2(x^2 + 1):

x22x1=A(x1)(x2+1)+B(x2+1)+(Cx+D)(x1)2x^2 - 2x - 1 = A(x-1)(x^2 + 1) + B(x^2 + 1) + (Cx + D)(x-1)^2

Substitute x=1x = 1:

(1)22(1)1=B(12+1)  

  2=2B  

  B=1(1)^2 - 2(1) - 1 = B(1^2 + 1) \implies -2 = 2B \implies B = -1

Expand and equate coefficients:
Right-hand side:

A(x3x2+x1)+B(x2+1)+(Cx+D)(x22x+1)A(x^3 - x^2 + x - 1) + B(x^2 + 1) + (Cx + D)(x^2 - 2x + 1)

Substitute B=1B = -1:

=A(x3x2+x1)(x2+1)+(Cx+D)(x22x+1)= A(x^3 - x^2 + x - 1) - (x^2 + 1) + (Cx + D)(x^2 - 2x + 1)

Expand (Cx+D)(x22x+1)(Cx + D)(x^2 - 2x + 1):

Cx32Cx2+Cx+Dx22Dx+D=Cx3+(2C+D)x2+(C2D)x+DCx^3 - 2Cx^2 + Cx + Dx^2 - 2Dx + D = Cx^3 + (-2C + D)x^2 + (C - 2D)x + D

Combine all:

[Ax3Ax2+AxA]+[x21]+[Cx3+(2C+D)x2+(C2D)x+D][A x^3 - A x^2 + A x - A] + [-x^2 - 1] + [C x^3 + (-2C + D)x^2 + (C - 2D)x + D] =(A+C)x3+(A12C+D)x2+(A+C2D)x+(A1+D)= (A + C)x^3 + (-A - 1 - 2C + D)x^2 + (A + C - 2D)x + (-A - 1 + D)

Equate to left-hand side x22x1x^2 - 2x - 1 (i.e., 0x3+1x22x10x^3 + 1x^2 - 2x - 1):

  • x3x^3: A+C=0A + C = 0  equestion(1)
  • x2x^2: A12C+D=1-A - 1 - 2C + D = 1 equestion (2)
  • xx: A+C2D=2A + C - 2D = -2 equestion (3)
  • Constant: A1+D=1-A - 1 + D = -1 equestion (4)
    From (1): C=AC = -A
    From (4): A+D=0    D=A-A + D = 0 \implies D = A
    Substitute into equestion(3):

A+(A)2(A)=2    2A=2    A=1A + (-A) - 2(A) = -2 \implies -2A = -2 \implies A = 1

Then C=1C = -1, D=1D = 1
Verify equestion(2):

112(1)+1=2+2+1=1(correct)-1 - 1 - 2(-1) + 1 = -2 + 2 + 1 = 1 \quad \text{(correct)}

Thus:

1x11(x1)2+(1)x+1x2+1=1x11(x1)2+1xx2+1\frac{1}{x-1} - \frac{1}{(x-1)^2} + \frac{(-1)x + 1}{x^2 + 1} = \frac{1}{x-1} - \frac{1}{(x-1)^2} + \frac{1 - x}{x^2 + 1}


(b) Given that f(x)=2x212x+3f(x) = 2x^2 - 12x + 3 quadratic function.

(i) Complete the square of quadratic functions. [3]

Answer:

f(x)=2(x3)215f(x) = 2(x - 3)^2 - 15

Explanation:

f(x)=2x212x+3=2(x26x)+3f(x) = 2x^2 - 12x + 3 = 2(x^2 - 6x) + 3

Complete the square:

x26x=(x3)29x^2 - 6x = (x - 3)^2 - 9

So:

f(x)=2[(x3)29]+3

=2(x3)218+3

=2(x3)215f(x) = 2[(x - 3)^2 - 9] + 3 = 2(x - 3)^2 - 18 + 3 = 2(x - 3)^2 - 15

(ii) Hence sketch the graph of the function, showing clearly the y – intercepts, turning point and line of symmetry. [3]
Solution:

  • Y-intercept: (0,3)(0, 3)
  • X-intercepts: (6302,0)\left( \frac{6 - \sqrt{30}}{2}, 0 \right), (6+302,0)\left( \frac{6 + \sqrt{30}}{2}, 0 \right)
  • Turning point (vertex): (3,15)(3, -15)
  • Line of symmetry: x=3x = 3
    Explanation:
  • Y-intercept: f(0)=2(0)212(0)+3=3f(0) = 2(0)^2 - 12(0) + 3 = 3, so (0,3)(0, 3).
  • X-intercepts: Solve 2x212x+3=02x^2 - 12x + 3 = 0: x=12±(12)24234=12±1204=12±2304=6±302x = \frac{12 \pm \sqrt{(-12)^2 - 4 \cdot 2 \cdot 3}}{4} = \frac{12 \pm \sqrt{120}}{4} = \frac{12 \pm 2\sqrt{30}}{4} = \frac{6 \pm \sqrt{30}}{2}
  • Vertex: From f(x)=2(x3)215f(x) = 2(x - 3)^2 - 15, vertex is (3,15)(3, -15).
  • Line of symmetry: Vertical line through vertex, x=3x = 3.
  • Graph is a parabola opening upwards (since coefficient of x2x^2 is positive).

Sketch:

  • Vertex at (3,15)(3, -15).
  • Y-intercept at (0,3)(0, 3).
  • X-intercepts approximately at (0.261,0)(0.261, 0) and (5.739,0)(5.739, 0) (since 305.477\sqrt{30} \approx 5.477).
  • Line of symmetry x=3x = 3.

(c) Given that log2x+2log4y=4\log_2 x + 2\log_4 y = 4,

(i) Show that xy=16xy = 16. [2]

ANSWER:

log2x+2log2y2=log2x+log2y=log2(xy)=4\log_2 x + 2 \cdot \frac{\log_2 y}{2} = \log_2 x + \log_2 y = \log_2 (xy) = 4

Thus:

xy=24=16xy = 2^4 = 16

Explanation:

log4y=log2ylog24=log2y2\log_4 y = \frac{\log_2 y}{\log_2 4} = \frac{\log_2 y}{2}

So:

log2x+2X(log2y2)

=log2x+log2y

=log2(xy)\log_2 x + 2 \cdot \left( \frac{\log_2 y}{2} \right) = \log_2 x + \log_2 y = \log_2 (xy)

Given equal to 4:

log2(xy)=4  

  xy=24

=16\log_2 (xy) = 4 \implies xy = 2^4 = 16


(ii) Hence solve for xx and yy given that

log10(x+y)=1\log_{10}(x+y) = 1

ANSWER:

(x,y)=(2,8)or(8,2)(x, y) = (2, 8) \quad \text{or} \quad (8, 2)

Explanation:
From log10(x+y)=1\log_{10}(x+y) = 1:

x+y=101=10x + y = 10^1 = 10

From (i): xy=16xy = 16.
So xx and yy are roots of:

t2(x+y)t+xy=0  

  t210t+16=0t^2 - (x+y)t + xy = 0 \implies t^2 - 10t + 16 = 0

Factorize:

(t2)(t8)=0  

  t=2ort=8(t - 2)(t - 8) = 0 \implies t = 2 \quad \text{or} \quad t = 8

So solutions: (x,y)=(2,8)(x, y) = (2, 8) or (8,2)(8, 2).
Check domain:

  • Original logs require x>0x > 0, y>0y > 0, satisfied.
  • log10(x+y)\log_{10}(x+y) defined for x+y>0x+y > 0, satisfied.

QUESTION TWO

(a) State the following

(i) The remainder theorem [2]
Solution:
When a polynomial f(x)f(x) is divided by a linear divisor (xa)(x - a), the remainder is f(a)f(a).

(ii) The polynomial of degree 8 and give your own example [2]
Solution:
A polynomial of degree 8 has the highest power of the variable equal to 8.
Example: f(x)=3x82x5+x7f(x) = 3x^8 - 2x^5 + x - 7.


(b) Given that f(x)=x3+x214x24f(x) = x^3 + x^2 - 14x - 24 is a polynomial of degree three.

(i) Factorise completely for which f(x)f(x). [4]
Solution:

f(x)=(x+3)(x+2)(x4)f(x) = (x + 3)(x + 2)(x - 4)

Explanation:
Possible rational roots: ±1,2,3,4,6,8,12,24\pm 1, 2, 3, 4, 6, 8, 12, 24.
Test x=2x = -2:

f(2)=(2)3+(2)214(2)24=8+4+2824=0f(-2) = (-2)^3 + (-2)^2 - 14(-2) - 24 = -8 + 4 + 28 - 24 = 0

So (x+2)(x + 2) is a factor.
Synthetic division (x=2x = -2):

1114242222411120\begin{array}{r|rrrr} & 1 & 1 & -14 & -24 \\ -2 & & -2 & 2 & 24 \\ \hline & 1 & -1 & -12 & 0 \\ \end{array}

Quotient: x2x12x^2 - x - 12.
Factor: x2x12=(x4)(x+3)x^2 - x - 12 = (x - 4)(x + 3).
Thus:

f(x)=(x+2)(x4)(x+3)

f(x) = (x + 2)(x - 4)(x + 3)

OR LETS DO THIS DOCTORS 

🔹 Given:

f(x)=x3+x214x24

We aim to factorize completely.


✅ Step 1: Group terms

Group the polynomial in pairs:

f(x)=(x3+x2)+(14x24)

Factor each group:

=x2(x+1)2(7x+12)

This doesn’t help directly, so we’ll try Rational Root Theorem.


✅ Step 2: Use Rational Root Theorem

Try rational roots of the form:

Factors of constant term (24)÷Factors of leading coefficient (1)±1,±2,±3,±4,±6,±8,±12,±24

Try x=2:

f(2)=(2)3+(2)214(2)24=8+4+2824=0x=2 is a root


✅ Step 3: Use synthetic division to divide by x+2

We divide:

f(x)÷(x+2)

Synthetic division:

-2 |  1   1   -14   -24
    |      -2   2    24
    -------------------
      1  -1   -12    0

So:

f(x)=(x+2)(x2x12)


✅ Step 4: Factor the quadratic

x2x12=(x4)(x+3)


✅ Final Factorization:

f(x)=(x+2)(x4)(x+3)


✅ Final Answer:

f(x)=(x+2)(x4)(x+3)



(ii) Find all solutions for which f(x)=0f(x) = 0. [3]
Solution:

x=3,x=2,x=4x = -3, \quad x = -2, \quad x = 4

Explanation:
Set f(x)=0f(x) = 0:

(x+3)(x+2)(x4)=0(x + 3)(x + 2)(x - 4) = 0

So x=3x = -3, x=2x = -2, or x=4x = 4.

(iii) Sketch the graph of f(x)f(x). [3]
Solution:

  • Zeros: x=3x = -3, x=2x = -2, x=4x = 4.
  • Y-intercept: f(0)=24f(0) = -24, so (0,24)(0, -24).
  • Behavior: As xx \to \infty, f(x)f(x) \to \infty; as xx \to -\infty, f(x)f(x) \to -\infty.
  • Sign changes:
    • For x<3x < -3: negative (e.g., f(4)=16f(-4) = -16)
    • 3<x<2-3 < x < -2: positive (e.g., f(2.5)=1.875f(-2.5) = 1.875)
    • 2<x<4-2 < x < 4: negative (e.g., f(0)=24f(0) = -24)
    • x>4x > 4: positive (e.g., f(5)=36f(5) = 36)
      Graph crosses x-axis at each root.
      (Sketch described: cubic curve passing through (-3,0), (-2,0), (4,0), and (0,-24), with behavior as above.)

(iv) Hence or otherwise find the solution set for which x3+x214x240x^3 + x^2 - 14x - 24 \leq 0. [2]
Solution:

x(,3][2,4]x \in (-\infty, -3] \cup [-2, 4]

Explanation:
From sign analysis:

  • f(x)0f(x) \leq 0 when x(,3][2,4]x \in (-\infty, -3] \cup [-2, 4].
    Includes zeros and intervals where negative.

OR LETS DO THIS DOCTORS 

The inequality is:

(x4)(x+2)(x+3)0.(x - 4)(x + 2)(x + 3) \leq 0.

The roots are x=3x = -3, x=2x = -2, and x=4x = 4. These roots divide the real number line into intervals: (,3)(-\infty, -3), (3,2)(-3, -2), (2,4)(-2, 4), and (4,)(4, \infty). Test the sign of the expression in each interval.

  • For x(,3)x \in (-\infty, -3), choose x=4x = -4: (44)=8<0,(4+2)=2<0,(4+3)=1<0.(-4 - 4) = -8 < 0, \quad (-4 + 2) = -2 < 0, \quad (-4 + 3) = -1 < 0. The product is ()()()=(-) \cdot (-) \cdot (-) = - (negative).
  • For x(3,2)x \in (-3, -2), choose x=2.5x = -2.5: (2.54)=6.5<0,(2.5+2)=0.5<0,(2.5+3)=0.5>0.(-2.5 - 4) = -6.5 < 0, \quad (-2.5 + 2) = -0.5 < 0, \quad (-2.5 + 3) = 0.5 > 0. The product is ()()(+)=+(-) \cdot (-) \cdot (+) = + (positive).
  • For x(2,4)x \in (-2, 4), choose x=0x = 0: (04)=4<0,(0+2)=2>0,(0+3)=3>0.(0 - 4) = -4 < 0, \quad (0 + 2) = 2 > 0, \quad (0 + 3) = 3 > 0. The product is ()(+)(+)=(-) \cdot (+) \cdot (+) = - (negative).
  • For x(4,)x \in (4, \infty), choose x=5x = 5: (54)=1>0,(5+2)=7>0,(5+3)=8>0.(5 - 4) = 1 > 0, \quad (5 + 2) = 7 > 0, \quad (5 + 3) = 8 > 0. The product is (+)(+)(+)=+(+) \cdot (+) \cdot (+) = + (positive).

The expression is less than or equal to zero where it is negative or zero. It is negative in (,3)(-\infty, -3) and (2,4)(-2, 4), and zero at x=3x = -3, x=2x = -2, and x=4x = 4. Including these roots, the solution set is:

ANSWER : (,3][2,4].


(c) Find the remainder of the polynomial p(x)=x43x2+x10p(x) = x^4 - 3x^2 + x - 10 when it is divide by x+2x + 2 by using synthetic division [4]
Solution:
Remainder = 8-8
Explanation:
Synthetic division (divisor x+2x + 2, so root x=2x = -2):
Coefficients: 11 (x⁴), 00 (x³), 3-3 (x²), 11 (x), 10-10 (constant).

1031102242212118\begin{array}{r|rrrrr} & 1 & 0 & -3 & 1 & -10 \\ -2 & & -2 & 4 & -2 & 2 \\ \hline & 1 & -2 & 1 & -1 & -8 \\ \end{array}

Remainder is 8-8.


We’re dividing by x+2x + 2 with coefficients [1, 0, -3, 1, -10]. The root is 2-2.

Here’s the synthetic division:

2103110242212118\begin{array}{r|rrrrr} -2 & 1 & 0 & -3 & 1 & -10 \\ & & -2 & 4 & -2 & 2 \\ \hline & 1 & -2 & 1 & -1 & -8 \\ \end{array}

Final answer: The remainder is 8-8. Use synthetic division with root x=2x=-2 (since dividing by x+2x+2). Include the missing x3x^3 term as 0.

Coefficients: [1,0,3,1,10][1, 0, -3, 1, -10]

-2   |  1    0    -3     1    -10
     |      -2     4    -2      2
     -----------------------------
       1   -2     1    -1     -8

Final answer: remainder =8=-8.


QUESTION THREE

(a) Define the following

(i) Discriminate of quadratic equation [2]
Solution:
For ax2+bx+c=0ax^2 + bx + c = 0, the discriminant is D=b24acD = b^2 - 4ac. It determines the nature of roots:

  • D>0D > 0: two distinct real roots.
  • D=0D = 0: one real root (repeated).
  • D<0D < 0: no real roots (complex).

(ii) An exponential function [2]
Solution:
A function of the form f(x)=abxf(x) = a \cdot b^x, where aa is a constant, b>0b > 0, b1b \neq 1, and xx is the exponent.


(b) Solve the following without using calculator or log table.

(i) 

ln(3x2)+ln(x+1)=ln(3x2+1)\ln(3x-2) + \ln(x+1) = \ln(3x^2+1)

Solution:

x = 3
Combine logs:

ln[(3x2)(x+1)]=ln(3x2+1)\ln[(3x-2)(x+1)] = \ln(3x^2+1)

Equate arguments (since ln\ln one-to-one):

(3x2)(x+1)=3x2+1(3x-2)(x+1) = 3x^2 + 1

Expand:

3x2+3x2x2=3x2+1  

  3x2+x2

=3x2+13x^2 + 3x - 2x - 2 = 3x^2 + 1 \implies 3x^2 + x - 2 = 3x^2 + 1

Simplify:

x2=1

ANSWER:  x=3x - 2 = 1 \implies x = 3

Check domain: 3x2>0    x>2/33x-2 > 0 \implies x > 2/3, x+1>0    x>1x+1 > 0 \implies x > -1, and x=3>2/3x=3 > 2/3, valid.


(ii)

log3(2x1)=2log9(x+1)\log_3 (2x-1) = 2\log_9 (x+1)

Solution:

x = 2


Note:   log9=log3log39=log32\log_9 = \frac{\log_3}{\log_3 9} = \frac{\log_3}{2}, so:

2log9(x+1)

=2log3(x+1)2

=log3(x+1)2 \log_9 (x+1) = 2 \cdot \frac{\log_3 (x+1)}{2} = \log_3 (x+1)

Thus:

log3(2x1)=log3(x+1)\log_3 (2x-1) = \log_3 (x+1)

Equate arguments:

2x1=x+1

2x − x = 1+ 1  

ANSWER: ⟹  x=22x - 1 = x + 1 \implies x = 2

Check domain: 2x1>0    x>0.52x-1 > 0 \implies x > 0.5, x+1>0    x>1x+1 > 0 \implies x > -1, and x=2>0.5x=2 > 0.5, valid.


(c) Write the given expression in terms of log2\log 2, log3\log 3 and log7\log 7 to any base

log(163×1254498)\log \left( \frac{\sqrt[3]{16} \times \sqrt[4]{125}}{\sqrt[8]{49}} \right)

Note: The original expression has 1254\sqrt[4]{125}, but 125 = 5³ introduces log5\log 5, which is not allowed. Assuming a typo and 814\sqrt[4]{81} is intended (as 81 = 3⁴), to match required logs.

Solution (with 814\sqrt[4]{81}):

log(163×814498)=43log2+log314log7\log \left( \frac{\sqrt[3]{16} \times \sqrt[4]{81}}{\sqrt[8]{49}} \right) = \frac{4}{3} \log 2 + \log 3 - \frac{1}{4} \log 7

Explanation (assuming 814\sqrt[4]{81}):

  • 163=161/3=(24)1/3=24/3\sqrt[3]{16} = 16^{1/3} = (2^4)^{1/3} = 2^{4/3}
  • 814=811/4=(34)1/4=31=3\sqrt[4]{81} = 81^{1/4} = (3^4)^{1/4} = 3^1 = 3
  • 498=491/8=(72)1/8=72/8=71/4\sqrt[8]{49} = 49^{1/8} = (7^2)^{1/8} = 7^{2/8} = 7^{1/4}
    So:

24/3×371/4=24/33171/4\frac{2^{4/3} \times 3}{7^{1/4}} = 2^{4/3} \cdot 3^1 \cdot 7^{-1/4}

Take log:

log(24/3371/4)=43log2+log314log7\log(2^{4/3} \cdot 3 \cdot 7^{-1/4}) = \frac{4}{3} \log 2 + \log 3 - \frac{1}{4} \log 7

If original 1254\sqrt[4]{125} is kept, it would require log5\log 5, but problem specifies only log2,log3,log7\log 2, \log 3, \log 7.


OR MAYBE  LETS DO THIS DOCTORS 

We are given the expression:

log(163×1254498)\log\left( \frac{\sqrt[3]{16} \times \sqrt[4]{125}}{\sqrt[8]{49}} \right)

and asked to express it in terms of log2\log 2, log3\log 3, and log7\log 7.


✅ Step 1: Rewrite each term using exponents

  • 163=161/3=(24)1/3=24/3\sqrt[3]{16} = 16^{1/3} = (2^4)^{1/3} = 2^{4/3}
  • 1254=1251/4=(53)1/4=53/4\sqrt[4]{125} = 125^{1/4} = (5^3)^{1/4} = 5^{3/4}
  • 498=491/8=(72)1/8=72/8=71/4\sqrt[8]{49} = 49^{1/8} = (7^2)^{1/8} = 7^{2/8} = 7^{1/4}

So the expression becomes:

log(24/353/471/4)\log\left( \frac{2^{4/3} \cdot 5^{3/4}}{7^{1/4}} \right)


✅ Step 2: Apply log rules

log(24/353/471/4)=log(24/3)+log(53/4)log(71/4)\log\left( \frac{2^{4/3} \cdot 5^{3/4}}{7^{1/4}} \right) = \log(2^{4/3}) + \log(5^{3/4}) - \log(7^{1/4}) =43log2+34log514log7= \frac{4}{3} \log 2 + \frac{3}{4} \log 5 - \frac{1}{4} \log 7


✅ Step 3: Express log5\log 5 in terms of log2\log 2 and log3\log 3

Since 5=102=2525 = \frac{10}{2} = \frac{2 \cdot 5}{2}, we use:

log5=log(10)log(2)=1log2(if base 10)\log 5 = \log(10) - \log(2) = 1 - \log 2 \quad \text{(if base 10)}

But if we want everything in terms of log2\log 2, log3\log 3, and log7\log 7, we can use:

log5=log(102)=log10log2=1log2\log 5 = \log\left( \frac{10}{2} \right) = \log 10 - \log 2 = 1 - \log 2

So:

34log5=34(1log2)=3434log2\frac{3}{4} \log 5 = \frac{3}{4}(1 - \log 2) = \frac{3}{4} - \frac{3}{4} \log 2


✅ Final Answer:

log(1631254498)=43log2+34log514log7\log\left( \frac{\sqrt[3]{16} \cdot \sqrt[4]{125}}{\sqrt[8]{49}} \right) = \frac{4}{3} \log 2 + \frac{3}{4} \log 5 - \frac{1}{4} \log 7

If you express log5=log10log2=1log2\log 5 = \log 10 - \log 2 = 1 - \log 2, then:

=43log2+(3434log2)14log7=(4334)log2+3414log7= \frac{4}{3} \log 2 + \left( \frac{3}{4} - \frac{3}{4} \log 2 \right) - \frac{1}{4} \log 7 = \left( \frac{4}{3} - \frac{3}{4} \right) \log 2 + \frac{3}{4} - \frac{1}{4} \log 7 =(16912)log2+3414log7=712log2+3414log7= \left( \frac{16 - 9}{12} \right) \log 2 + \frac{3}{4} - \frac{1}{4} \log 7 = \frac{7}{12} \log 2 + \frac{3}{4} - \frac{1}{4} \log 7


@Dr. Microbiota


(d) Find the value of the following trigonometric ratios without using a calculator

(i)

Sin(300)\text{Sin}(300^\circ)

Solution:

\sin(300^\circ) = -\frac{\sqrt{3}}{2}
300° is in quadrant IV, reference angle = 360° - 300° = 60°.

sin(300)=sin(60)

=32\sin(300^\circ) = -\sin(60^\circ) = -\frac{\sqrt{3}}{2}


(ii)

Sec(7π6)\text{Sec} \left( \frac{7\pi}{6} \right)

Solution:

\sec \left( \frac{7\pi}{6} \right) = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}
7π6\frac{7\pi}{6} is in quadrant III, reference angle = 7π6π=π6\frac{7\pi}{6} - \pi = \frac{\pi}{6}.

cos(7π6)=cos(π6)

=32\cos \left( \frac{7\pi}{6} \right) = -\cos \left( \frac{\pi}{6} \right) = -\frac{\sqrt{3}}{2}

So:

sec(7π6)=1cos=132

=23

=233\sec \left( \frac{7\pi}{6} \right) = \frac{1}{\cos} = \frac{1}{-\frac{\sqrt{3}}{2}} = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}


@Dr. Microbiota


END OF SOLUTIONS