INTRODUCTION TO MATHEMATICAL METHODS FINAL EXAM JULY INTAKE 2023

DATE : 17th November, 2023


QUESTION ONE

a) Define
(i) A Power set
(ii) Disjoint set

Answer:
(i) The power set of a set SS is the set of all possible subsets of SS, including the empty set and SS itself. It is denoted by P(S)P(S).
(ii) Two sets are disjoint if they have no elements in common, i.e., their intersection is the empty set.


b) Let U=[4,12]U = [-4, 12] be the universal set and set A=[2,7)A = [-2, 7), B=(5,10)B = (5, 10) and C=[2,8]C = [2, 8]. Find
(i) (AB)Cc(A \cup B) \cap C^c
(ii) BAB - A

Answer:
(i)

  • AB=[2,10)A \cup B = [-2, 10)
  • Cc=[4,2)(8,12]C^c = [-4, 2) \cup (8, 12]
  • (AB)Cc=[2,2)(8,10)(A \cup B) \cap C^c = [-2, 2) \cup (8, 10)

(ii)

  • BA=[7,10)B - A = [7, 10)

Explanation:
(i)

  • Union ABA \cup B: A=[2,7)A = [-2, 7), B=(5,10)B = (5, 10). The union combines intervals: from 2-2 to 1010,

excluding 1010 (since 77 is excluded in AA, but BB includes values up to but not including 1010,

and 55 is included via AA). Thus, AB=[2,10)A \cup B = [-2, 10).

  • Complement CcC^c: C=[2,8]C = [2, 8], so CcC^c in U=[4,12]U = [-4, 12] is [4,2)(8,12][-4, 2) \cup (8, 12].
  • Intersection: (AB)Cc(A \cup B) \cap C^c is the overlap between [2,10)[-2, 10) and [4,2)(8,12][-4, 2) \cup (8, 12]. This gives [2,2)(8,10)[-2, 2) \cup (8, 10).

(ii)

  • Set difference BA=BAcB - A = B \cap A^c.
  • Ac=[4,2)[7,12]A^c = [-4, -2) \cup [7, 12] (complement of AA in UU).
  • B=(5,10)B = (5, 10), so BAc=(5,10)[7,12]=[7,10)B \cap A^c = (5, 10) \cap [7, 12] = [7, 10) (since 55 and 1010 are excluded in BB, but 77 is included).

c) Given that U={1,2,3,4,5,6,7,8,9,10}U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, Let set A={1,3,4,5,7}A = \{1, 3, 4, 5, 7\} and B={2,3,4,6,8}B = \{2, 3, 4, 6, 8\} and C={1,2,3}C = \{1, 2, 3\} find
(i) (AB)Cc(A \cap B) \cup C^c
(ii) (BA)cC(B \cap A)^c \cap C

Answer:
(i) (AB)Cc={3,4,5,6,7,8,9,10}(A \cap B) \cup C^c = \{3, 4, 5, 6, 7, 8, 9, 10\}
(ii) (BA)cC={1,2}(B \cap A)^c \cap C = \{1, 2\}

Explanation:
(i)

  • AB={3,4}A \cap B = \{3, 4\} (common elements).
  • Cc=UC={4,5,6,7,8,9,10}C^c = U - C = \{4, 5, 6, 7, 8, 9, 10\}.
  • Union: {3,4}{4,5,6,7,8,9,10}={3,4,5,6,7,8,9,10}\{3, 4\} \cup \{4, 5, 6, 7, 8, 9, 10\} = \{3, 4, 5, 6, 7, 8, 9, 10\}.

(ii)

  • BA={3,4}B \cap A = \{3, 4\} (same as ABA \cap B).
  • (BA)c=U{3,4}={1,2,5,6,7,8,9,10}(B \cap A)^c = U - \{3, 4\} = \{1, 2, 5, 6, 7, 8, 9, 10\}.
  • Intersection with C={1,2,3}C = \{1, 2, 3\}: {1,2,5,6,7,8,9,10}{1,2,3}={1,2}\{1, 2, 5, 6, 7, 8, 9, 10\} \cap \{1, 2, 3\} = \{1, 2\}.

d) For each of the following
(i) Write the following in roster form. A={xx is an integer and x2x6 is an odd number}A = \{x \mid x \text{ is an integer and } x^2 - x - 6 \text{ is an odd number}\}
(ii) Let set A={1,5}A = \{1, 5\} and B={2,3}B = \{2, 3\}, find P(A×B)P(A \times B)
(iii) Let set A={1,2}A = \{1, 2\} and B={3}B = \{3\}, verify P(A)P(B)P(AB)P(A) \cup P(B) \subset P(A \cup B)

Answer:
(i) A=A = \emptyset (empty set).

(ii) P(A×B)={,{(1,2)},{(1,3)},{(5,2)},{(5,3)},{(1,2),(1,3)},{(1,2),(5,2)},{(1,2),(5,3)},{(1,3),

(5,2)},{(1,3),(5,3)},{(5,2),(5,3)},{(1,2),(1,3),(5,2)},{(1,2),(1,3),(5,3)},{(1,2),(5,2),(5,3)},

{(1,3),(5,2),(5,3)},{(1,2),(1,3),(5,2),(5,3)}}P(A \times B) = \left\{ \emptyset, \{(1,2)\}, \{(1,3)\}, \{(5,2)\}, \{(5,3)\}, \{(1,2),(1,3)\}, \{(1,2),(5,2)\}, \{(1,2),(5,3)\}, \{(1,3),(5,2)\}, \{(1,3),(5,3)\}, \{(5,2),(5,3)\}, \{(1,2),(1,3),(5,2)\}, \{(1,2),(1,3),(5,3)\}, \{(1,2),(5,2),(5,3)\}, \{(1,3),(5,2),(5,3)\}, \{(1,2),(1,3),(5,2),(5,3)\} \right\}.

(iii) P(A)P(B)P(AB)P(A) \cup P(B) \subset P(A \cup B) holds true.

Explanation:
(i)

  • For any integer xx, x2x=x(x1)x^2 - x = x(x-1) is even (product of consecutive integers),

so x2x6x^2 - x - 6 is even. Thus, no integers satisfy the condition, and A=A = \emptyset.

(ii)

  • A×B={(1,2),(1,3),(5,2),(5,3)}A \times B = \{(1,2), (1,3), (5,2), (5,3)\}.
  • Power set P(A×B)P(A \times B) has 24=162^4 = 16 subsets, listed above.

(iii)

  • AB={1,2,3}A \cup B = \{1, 2, 3\}.
  • P(A)={,{1},{2},{1,2}}P(A) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}, P(B)={,{3}}P(B) = \{\emptyset, \{3\}\}, so P(A)P(B)={,{1},{2},{1,2},{3}}P(A) \cup P(B) = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{3\}\}.
  • P(AB)={,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}P(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.
  • All elements of P(A)P(B)P(A) \cup P(B) are in P(AB)P(A \cup B), so the subset relation holds.

e) Write the given expression in terms of log2\log 2, log5\log 5 and log7\log 7 to any base
log(163×1254498)\log \left( \frac{\sqrt[3]{16} \times \sqrt[4]{125}}{\sqrt[8]{49}} \right)

Answer:
43log2+34log514log7\frac{4}{3} \log 2 + \frac{3}{4} \log 5 - \frac{1}{4} \log 7

Explanation:

  • Simplify radicals:
    • 163=161/3=(24)1/3=24/3\sqrt[3]{16} = 16^{1/3} = (2^4)^{1/3} = 2^{4/3}.
    • 1254=1251/4=(53)1/4=53/4\sqrt[4]{125} = 125^{1/4} = (5^3)^{1/4} = 5^{3/4}.
    • 498=491/8=(72)1/8=71/4\sqrt[8]{49} = 49^{1/8} = (7^2)^{1/8} = 7^{1/4}.
  • Expression becomes log(24/3x53/471/4)=log(24/3x53/4x71/4)\log \left( \frac{2^{4/3} \cdot 5^{3/4}}{7^{1/4}} \right) = \log \left( 2^{4/3} \cdot 5^{3/4} \cdot 7^{-1/4} \right).
  • Apply logarithm properties:
    log(axbxc)=loga+logb+logc,log(ab)=bloga\log( a \cdot b \cdot c ) = \log a + \log b + \log c, \quad \log(a^b) = b \log a
  • =43log2+34log514log7= \frac{4}{3} \log 2 + \frac{3}{4} \log 5 - \frac{1}{4} \log 7.

QUESTION TWO

a) Define
(i) A binary operation
(ii) An even function

Answer:
(i) A binary operation on a set SS is a function :S×SS* : S \times S \to S that assigns to each ordered pair (a,b)S×S(a, b) \in S \times S an element abSa * b \in S.
(ii) A function ff is even if f(x)=f(x)f(-x) = f(x) for all xx in its domain. The graph is symmetric about the y-axis.


b) For each of the following
(i) Simplify [(AB)c(ABc)]c[(A \cup B)^c \cap (A \cup B^c)]^c
(ii) Use the Venn diagram to represent the sets (AB)cC(A - B)^c \cap C

Answer:
(i) ABA \cup B
(ii) Shade the region corresponding to CC except the part in AA but not in BB.

Explanation:
(i)

  • Apply set identities:
    [(AB)c(ABc)]c=[(AcBc)(ABc)]c[(A \cup B)^c \cap (A \cup B^c)]^c = [ (A^c \cap B^c) \cap (A \cup B^c) ]^c
    • Distribute: AcBcA=A^c \cap B^c \cap A = \emptyset, and AcBcBc=AcBcA^c \cap B^c \cap B^c = A^c \cap B^c, so (AcBc)=AcBc\emptyset \cup (A^c \cap B^c) = A^c \cap B^c.
    • Then (AcBc)c=AB(A^c \cap B^c)^c = A \cup B (De Morgan's law).
  • Simplified form: ABA \cup B.

(ii)

  • AB=ABcA - B = A \cap B^c, so (AB)c=AcB(A - B)^c = A^c \cup B.
  • (AB)cC=(AcB)C=(AcC)(BC)(A - B)^c \cap C = (A^c \cup B) \cap C = (A^c \cap C) \cup (B \cap C).
  • In a Venn diagram for sets A,B,CA, B, C, shade:
    • All of CC not in AA (i.e., CAcC \cap A^c).
    • All of CC in BB (i.e., BCB \cap C).
  • This is equivalent to shading CC except the region where CC is in AA but not in BB (i.e., CABcC \cap A \cap B^c).

c) Rationalize the denominators for each of the following
(i) 1+5135\frac{1 + \sqrt{5}}{1 - 3\sqrt{5}}

(ii) 7+172\frac{\sqrt{7} + 1}{\sqrt{7} - 2}

Answer:
(i) 4+511-\frac{4 + \sqrt{5}}{11}

(ii) 3+73 + \sqrt{7}

Explanation:
(i)

  • Multiply numerator and denominator by conjugate 1+351 + 3\sqrt{5}:

(1+5)(1+35)(1)2(35)2

=1x1+1x35+5x1+5x35145

=1+35+5+1544

=16+4544\frac{(1 + \sqrt{5})(1 + 3\sqrt{5})}{(1)^2 - (3\sqrt{5})^2} = \frac{1 \cdot 1 + 1 \cdot 3\sqrt{5} + \sqrt{5} \cdot 1 + \sqrt{5} \cdot 3\sqrt{5}}{1 - 45} = \frac{1 + 3\sqrt{5} + \sqrt{5} + 15}{-44} = \frac{16 + 4\sqrt{5}}{-44}

=4(4+5)44

=4+511= -\frac{4(4 + \sqrt{5})}{44} = -\frac{4 + \sqrt{5}}{11}.


(ii)

  • Multiply numerator and denominator by conjugate 7+2\sqrt{7} + 2:

(7+1)(7+2)(7)2(2)2

=7x7+7x2+1 x 7+1x274

=7+27+7+23

=9+373

=3+7\frac{(\sqrt{7} + 1)(\sqrt{7} + 2)}{(\sqrt{7})^2 - (2)^2} = \frac{\sqrt{7} \cdot \sqrt{7} + \sqrt{7} \cdot 2 + 1 \cdot \sqrt{7} + 1 \cdot 2}{7 - 4} = \frac{7 + 2\sqrt{7} + \sqrt{7} + 2}{3} = \frac{9 + 3\sqrt{7}}{3} = 3 + \sqrt{7}.


d) Express the following numbers in the form pq\frac{p}{q} where p and q are integers with no common factors, q0q \neq 0.
(i) 2.0332.03\overline{3} (repeating decimal)
(ii) 0.3-0.\overline{3} (repeating decimal)

Answer:
(i) 6130\frac{61}{30}
(ii) 13-\frac{1}{3}

Explanation:
(i)

  • Let x=2.03333x = 2.03333\ldots
  • Then 10x=20.333310x = 20.3333\ldots and 100x=203.3333100x = 203.3333\ldots.
  • Subtract: 100x10x=203.33320.333

so 90x=18390x = 183,

x=18390

x =6130x = \frac{183}{90} = \frac{61}{30}.

  • GCD of 61 and 30 is 1, so 6130\frac{61}{30}.

(ii)

  • Let x=0.3333x = -0.3333\ldots
  • Then 10x=3.333310x = -3.3333\ldots.
  • Subtract: 10xx=3.333(0.333)=310x - x = -3.333\ldots - (-0.333\ldots) = -3,
  • so 9x=39x = -3,
  • x=39
  • x=13x = -\frac{3}{9} = -\frac{1}{3}.

e) Find the domain of f(x)=2x+3x3f(x) = \frac{\sqrt{2x+3}}{x-3}. Hence sketch its graph show all intercepts and asymptotic lines.

Answer:

  • Domain: [32,3)(3,)\left[ -\frac{3}{2}, 3 \right) \cup (3, \infty).
  • Intercepts: x-intercept at (32,0)\left( -\frac{3}{2}, 0 \right), y-intercept at (0,33)\left( 0, -\frac{\sqrt{3}}{3} \right).
  • Asymptotes: Vertical asymptote at x=3x = 3, horizontal asymptote at y=0y = 0.
  • Graph: See sketch description below.

Explanation:

  • Domain:
    • Square root defined when 2x+30

    x322x + 3 \geq 0 \Rightarrow x \geq -\frac{3}{2}.

    • Denominator nonzero when x3x \neq 3.
    • Thus, domain: [32,3)(3,)\left[ -\frac{3}{2}, 3 \right) \cup (3, \infty).
  • Intercepts:
    • x-intercept: Set numerator to zero: 2x+3=02x+3=0x=32\sqrt{2x+3} = 0 \Rightarrow 2x+3=0 \Rightarrow x = -\frac{3}{2}. Point (32,0)\left( -\frac{3}{2}, 0 \right).
    • y-intercept: f(0)=33=33f(0) = \frac{\sqrt{3}}{-3} = -\frac{\sqrt{3}}{3}. Point (0,33)\left( 0, -\frac{\sqrt{3}}{3} \right).
  • Asymptotes:
    • Vertical asymptote at x=3x = 3 because as x3±x \to 3^{\pm}, denominator 0\to 0 and numerator 9=3\to \sqrt{9} = 3, so f(x)±f(x) \to \pm\infty (specifically, x3x \to 3^-, f(x)f(x) \to -\infty; x3+x \to 3^+, f(x)+f(x) \to +\infty).
    • Horizontal asymptote: As x±x \to \pm\infty, f(x)2xx=2x0f(x) \approx \frac{\sqrt{2x}}{x} = \sqrt{\frac{2}{x}} \to 0, so y=0y = 0.
  • Graph Sketch:
    • Behavior:
      • As x32+x \to -\frac{3}{2}^+, f(x)0f(x) \to 0.
      • For x[32,3)x \in \left[ -\frac{3}{2}, 3 \right), f(x)<0f(x) < 0, decreases from 0 to -\infty as x3x \to 3^-.
      • For x>3x > 3, f(x)>0f(x) > 0, decreases from ++\infty to 0 as xx \to \infty.
    • Key points:
      • x=0x = 0: f(0)=330.577f(0) = -\frac{\sqrt{3}}{3} \approx -0.577.
      • x=1x = 1: f(1)=521.118f(1) = \frac{\sqrt{5}}{-2} \approx -1.118.
      • x=2x = 2: f(2)=712.646f(2) = \frac{\sqrt{7}}{-1} \approx -2.646.
      • x=4x = 4: f(4)=1113.317f(4) = \frac{\sqrt{11}}{1} \approx 3.317.
      • x=5x = 5: f(5)=1321.803f(5) = \frac{\sqrt{13}}{2} \approx 1.803.
    • Sketch:
      • Start at (32,0)\left( -\frac{3}{2}, 0 \right), curve down to (0,0.577)(0, -0.577), continue down to (2,2.646)(2, -2.646), then plunge to -\infty as x3x \to 3^-.
      • For x>3x > 3, start at ++\infty at x=3+x = 3^+, curve down through (4,3.317)(4, 3.317), (5,1.803)(5, 1.803), approaching y=0y = 0 as xx \to \infty.
    • Asymptotes: Vertical line x=3x = 3, horizontal line y=0y = 0.


QUESTION THREE

a) Define
(i) Power set
(ii) Asymptotic line of a curve

Answer:
(i) The power set of a set SS is the set of all subsets of SS, including the empty set and SS itself.
(ii) An asymptote of a curve is a line such that the distance between the curve and the line approaches zero as one or both coordinates tend to infinity.


b) Let * be a binary operation on a given set.
(i) Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation, give justification for your answer on Z+, define * by a * b = a - b + 3.
(ii) Let * be the binary operation on N given by a * b = H.C.F of a and b. Find (2075)35(20*75)*35.

Answer:
(i) Not a binary operation. Justification: Result not always in Z+\mathbb{Z}^+ (e.g., 15=1Z+1 * 5 = -1 \notin \mathbb{Z}^+).
(ii) 5

Explanation:
(i)

  • For a,bZ+a, b \in \mathbb{Z}^+ (positive integers), ab=ab+3a * b = a - b + 3.
  • Example: a=1,b=5a = 1, b = 5, 15=15+3=1Z+1 * 5 = 1 - 5 + 3 = -1 \notin \mathbb{Z}^+.
  • Since the result is not always in Z+\mathbb{Z}^+, it is not a binary operation.

(ii)

  • 2075=HCF(20,75)=520 * 75 = \text{HCF}(20, 75) = 5 (since 20=22×520 = 2^2 \times 5, 75=3×5275 = 3 \times 5^2).
  • Then 535=HCF(5,35)=55 * 35 = \text{HCF}(5, 35) = 5.
  • Thus, (2075)35=5(20 * 75) * 35 = 5.

c) For the following
(i) In the quadratic equation, kx2+(2k+3)x2=0kx^2 + (2k + 3)x - 2 = 0, find the values of k for which this equation has two distinct real roots.
(ii) Given that the roots of the equation 2x2+12x+4=02x^2 + 12x + 4 = 0 are α and β. Find an equation whose roots are 1α\frac{1}{\alpha} and 1β-\frac{1}{\beta}.

Answer:
(i) k<92k < -\frac{9}{2} or k>12k > -\frac{1}{2} (i.e., k(,4.5)(0.5,)k \in (-\infty, -4.5) \cup (-0.5, \infty)).
(ii) One possible equation is x2+7x12=0x^2 + \sqrt{7}x - \frac{1}{2} = 0 (or 2x2+27x1=02x^2 + 2\sqrt{7}x - 1 = 0).

Explanation:
(i)

  • Discriminant D=b24ac=(2k+3)24(k)(2)

=4k2+12k+9+8k

=4k2+20k+9D = b^2 - 4ac = (2k+3)^2 - 4(k)(-2) = 4k^2 + 12k + 9 + 8k = 4k^2 + 20k + 9.

  • For two distinct real roots, D>0D > 0:
    4k2+20k+9>04k^2 + 20k + 9 > 0
    • Roots of equality: k=20±4001448

    k=20±168k = \frac{ -20 \pm \sqrt{400 - 144} }{8} = \frac{ -20 \pm 16}{8},

so k=48=0.5k = -\frac{4}{8} = -0.5,     k=368=4.5k = -\frac{36}{8} = -4.5.

  • Parabola opens upwards, so D>0D > 0 when k<4.5k < -4.5 or k>0.5k > -0.5.

(ii)

  • Simplify equation: 2x2+12x+4=0

x2+6x+2=02x^2 + 12x + 4 = 0 \Rightarrow x^2 + 6x + 2 = 0.

  • Roots α, β: Sum α+β=6\alpha + \beta = -6, product αβ=2\alpha \beta = 2.
  • New roots: r1=1αr_1 = \frac{1}{\alpha},   r2=1βr_2 = -\frac{1}{\beta}.
  • Product r1r2=(1α)(1β)

=1αβ

=12r_1 r_2 = \left( \frac{1}{\alpha} \right) \left( -\frac{1}{\beta} \right) = -\frac{1}{\alpha \beta} = -\frac{1}{2}.

  • Sum r1+r2=1α1β

=βααβ

=βα2r_1 + r_2 = \frac{1}{\alpha} - \frac{1}{\beta} = \frac{\beta - \alpha}{\alpha \beta} = \frac{\beta - \alpha}{2}.

  • (βα)2=(α+β)24αβ

=368=28(\beta - \alpha)^2 = (\alpha + \beta)^2 - 4\alpha\beta = 36 - 8 = 28,

so βα=±27\beta - \alpha = \pm 2\sqrt{7}, and sum =±272=±7= \frac{\pm 2\sqrt{7}}{2} = \pm \sqrt{7}.

  • Depending on labeling, sum is 7\sqrt{7} or 7-\sqrt{7}, but product is fixed. For example,

with α=3+7\alpha = -3 + \sqrt{7}, β=37\beta = -3 - \sqrt{7}, sum is 7-\sqrt{7}.

  • Equation: x2(sum)x+product=0x^2 - (\text{sum})x + \text{product} = 0,

so one possibility is x2+7x12=0x^2 + \sqrt{7}x - \frac{1}{2} = 0.


d) Solve the following without using calculator or log table.
(i) ln(3x2)+ln(x+1)=ln(3x2+1)\ln(3x - 2) + \ln(x + 1) = \ln(3x^2 + 1)
(ii) log3(2x1)=2log9(x+1)\log_3(2x - 1) = 2\log_9(x + 1)

Answer:
(i) x=3x = 3
(ii) x=2x = 2

Explanation:
(i)

  • Combine logs: ln[(3x2)(x+1)]=ln(3x2+1)\ln[(3x-2)(x+1)] = \ln(3x^2 + 1).
  • So (3x2)(x+1)=3x2+1(3x-2)(x+1) = 3x^2 + 1.
  • Expand: 3x2+3x2x2

                      =3x2+x2

                      =3x2+13x^2 + 3x - 2x - 2 = 3x^2 + x - 2 = 3x^2 + 1.

  • Solve: x2=1

                    ⇒x=3x - 2 = 1 \Rightarrow x = 3.

  • Check domain: 3x2>03x-2 > 0 and x+1>0x+1 > 0, so x>23x > \frac{2}{3}. x=3x=3 valid.

(ii)

  • Simplify: 2log9(x+1)=log9((x+1)2)2 \log_9(x+1) = \log_9((x+1)^2).
  • Convert base: log9((x+1)2)=log3((x+1)2)log39

                                                             =2log3(x+1)2

                                                             =log3(x+1)\log_9((x+1)^2) = \frac{\log_3((x+1)^2)}{\log_3 9} = \frac{2 \log_3(x+1)}{2} = \log_3(x+1).

  • So log3(2x1)=log3(x+1)

                  ⇒2x1=x+1

                  ⇒x=2\log_3(2x-1) = \log_3(x+1) \Rightarrow 2x-1 = x+1 \Rightarrow x = 2.

  • Check domain: 2x1>02x-1 > 0 and x+1>0x+1 > 0, so x>12x > \frac{1}{2}. x=2x=2 valid.

e) Determine the amplitude, phase shift, vertical shift and period for the following function and sketch the graph in the interval given
f(x)=23cos(2xπ6)[π6,2π]f(x) = 2 - 3 \cos \left( 2x - \frac{\pi}{6} \right) \quad \left[ -\frac{\pi}{6}, 2\pi \right]

Answer:

  • Amplitude: 3
  • Period: π\pi
  • Phase shift: π12\frac{\pi}{12} to the right
  • Vertical shift: 2
  • Graph: See sketch description below.

Explanation:

  • Standard form: a+bcos(c(xϕ))a + b \cos(c(x - \phi)), here f(x)=2+(3)cos(2xπ/6)f(x) = 2 + (-3) \cos(2x - \pi/6).
  • Amplitude: b=3|b| = 3.
  • Period: 2πc=2π2=π\frac{2\pi}{|c|} = \frac{2\pi}{2} = \pi.
  • Phase shift: Rewrite as cos(2(xπ12))\cos\left(2\left(x - \frac{\pi}{12}\right)\right), so ϕ=π12\phi = \frac{\pi}{12} (right shift).
  • Vertical shift: a=2a = 2.
  • Graph Sketch:
    • Range: f(x)[1,5]f(x) \in [-1, 5] (since 33cos()3-3 \leq -3\cos(\cdot) \leq 3, then add 2).
    • Key points (x, f(x)):
      • x=π/6x = -\pi/6: θ=2(π/6)π/6=π/2\theta = 2(-\pi/6) - \pi/6 = -\pi/2, f=23cos(π/2)=20=2f = 2 - 3\cos(-\pi/2) = 2 - 0 = 2.
      • x=π/12x = \pi/12: θ=0\theta = 0, f=23(1)=1f = 2 - 3(1) = -1.
      • x=π/3x = \pi/3: θ=π/2\theta = \pi/2, f=20=2f = 2 - 0 = 2.
      • x=7π/12x = 7\pi/12: θ=π\theta = \pi, f=23(1)=5f = 2 - 3(-1) = 5.
      • x=5π/6x = 5\pi/6: θ=3π/2\theta = 3\pi/2, f=20=2f = 2 - 0 = 2.
      • x=13π/12x = 13\pi/12: θ=2π\theta = 2\pi, f=1f = -1.
      • x=4π/3x = 4\pi/3: θ=5π/2\theta = 5\pi/2, f=2f = 2.
      • x=19π/12x = 19\pi/12: θ=3π\theta = 3\pi, f=5f = 5.
      • x=11π/6x = 11\pi/6: θ=7π/2\theta = 7\pi/2, f=2f = 2.
      • x=2πx = 2\pi: θ=23π/6\theta = 23\pi/6, cos(23π/6)=cos(π/6)=3/2\cos(23\pi/6) = \cos(-\pi/6) = \sqrt{3}/2, f=23(3/2)0.598f = 2 - 3(\sqrt{3}/2) \approx -0.598.
    • Behavior: Periodic with period π\pi, oscillates between -1 and 5.
    • Shape: Starts at (π/6,2)(-\pi/6, 2), decreases to (π/12,1)(\pi/12, -1), increases to (7π/12,5)(7\pi/12, 5), decreases to (13π/12,1)(13\pi/12, -1), etc.
    • In interval [π/6,2π][-\pi/6, 2\pi], plot points and connect smoothly.


QUESTION FOUR

a) State
(i) The remainder theorem
(ii) The discriminant of quadratic function

Answer:
(i) If a polynomial f(x)f(x) is divided by xcx - c, the remainder is f(c)f(c).
(ii) For ax2+bx+c=0ax^2 + bx + c = 0, the discriminant is b24acb^2 - 4ac, which determines the nature of the roots.


b) Given that f(x)=x3+x214x24f(x) = x^3 + x^2 - 14x - 24 is a polynomial of degree three.
(i) Factorise completely for which f(x)f(x).
(ii) Find roots of f(x)=0f(x) = 0.
(iii) Sketch the graph of f(x)f(x).

Answer:
(i) f(x)=(x4)(x+2)(x+3)f(x) = (x-4)(x+2)(x+3)
(ii) Roots: x=3,2,4x = -3, -2, 4
(iii) Graph: Cubic with roots at -3, -2, 4; y-intercept at (0, -24); local max and min.

Explanation:
(i)

  • Possible rational roots: factors of 24. Test x=4x=4: f(4)=64+165624=0f(4) = 64 + 16 - 56 - 24 = 0, so (x4)(x-4) is a factor.
  • Synthetic division: 4111424420241560\begin{array}{r|rrrr} 4 & 1 & 1 & -14 & -24 \\ & & 4 & 20 & 24 \\ \hline & 1 & 5 & 6 & 0 \\ \end{array}

  • Quotient: x2+5x+6=(x+2)(x+3)x^2 + 5x + 6 = (x+2)(x+3).
  • Thus, f(x)=(x4)(x+2)(x+3)f(x) = (x-4)(x+2)(x+3).

OR LETS DO THIS DOCTORS 

🔹 Given:

f(x)=x3+x214x24f(x) = x^3 + x^2 - 14x - 24

We aim to factorize completely.


✅ Step 1: Group terms

Group the polynomial in pairs:

f(x)=(x3+x2)+(14x24)f(x) = (x^3 + x^2) + (-14x - 24)

Factor each group:

=x2(x+1)2(7x+12)= x^2(x + 1) - 2(7x + 12)

This doesn’t help directly, so we’ll try Rational Root Theorem.


✅ Step 2: Use Rational Root Theorem

Try rational roots of the form:

Factors of constant term (24)÷Factors of leading coefficient (1)±1,±2,±3,±4,±6,±8,±12,±24\text{Factors of constant term } (-24) \div \text{Factors of leading coefficient } (1) \Rightarrow \pm1, \pm2, \pm3, \pm4, \pm6, \pm8, \pm12, \pm24

Try x=2x = -2:

f(2)=(2)3+(2)214(2)24=8+4+2824=0x=2 is a rootf(-2) = (-2)^3 + (-2)^2 - 14(-2) - 24 = -8 + 4 + 28 - 24 = 0 \Rightarrow x = -2 \text{ is a root}


✅ Step 3: Use synthetic division to divide by x+2x + 2

We divide:

f(x)÷(x+2)f(x) \div (x + 2)

Synthetic division:

-2 |  1   1   -14   -24
    |      -2   2    24
    -------------------
      1  -1   -12    0

So:

f(x)=(x+2)(x2x12)f(x) = (x + 2)(x^2 - x - 12)


✅ Step 4: Factor the quadratic

x2x12=(x4)(x+3)x^2 - x - 12 = (x - 4)(x + 3)


✅ Final Factorization:

f(x)=(x+2)(x4)(x+3)f(x) = (x + 2)(x - 4)(x + 3)


✅ Final Answer:

f(x)=(x+2)(x4)(x+3)


(ii)

  • Roots: x4=0x - 4 = 0, x+2=0x + 2 = 0, x+3=0x + 3 = 0x=4,2,3x = 4, -2, -3.

(iii)

  • y-intercept: f(0)=24f(0) = -24.
  • Behavior: As xx \to \infty, f(x)f(x) \to \infty; as xx \to -\infty, f(x)f(x) \to -\infty.
  • Local extrema: f(x)=3x2+2x14=0f'(x) = 3x^2 + 2x - 14 = 0. Discriminant 4+168=1724 + 168 = 172, roots 1±4332.52,1.85\frac{ -1 \pm \sqrt{43} }{3} \approx -2.52, 1.85.
    • f(x)=6x+2f''(x) = 6x + 2: at x2.52x \approx -2.52, f<0f'' < 0 (local max); at x1.85x \approx 1.85, f>0f'' > 0 (local min).
  • Sketch: Crosses x-axis at -3, -2, 4; y-axis at (0, -24); local max near (-2.52, 20.6), local min near (1.85, -39.7).


c) Let the functions f(x)=4xx1f(x) = \frac{4x}{x-1} and g(x)=x4g(x) = x - 4. Find
(i) f1(x)f^{-1}(x)
(ii) (fg)1(x)(f \circ g)^{-1}(x)

Answer:
(i) f1(x)=xx4f^{-1}(x) = \frac{x}{x-4}
(ii) (fg)1(x)=5x16x4(f \circ g)^{-1}(x) = \frac{5x - 16}{x - 4}

Explanation:

(i)

(i) Set y=4xx1y = \frac{4x}{x-1}.

Solve for xx: y(x1)=4x

yxy=4x

yx4x=y

x(y4)=y

x=yy4y(x-1) = 4x \Rightarrow yx - y = 4x \Rightarrow yx - 4x = y \Rightarrow x(y-4) = y \Rightarrow x = \frac{y}{y-4}.

Thus, f1(x)=xx4f^{-1}(x) = \frac{x}{x-4}.

(ii)

(i)

Set y=4xx1y = \frac{4x}{x-1}.

Solve for xx: y(x1)=4xyxy=4xyx4x=yx(y4)=yx=yy4y(x-1) = 4x \Rightarrow yx - y = 4x \Rightarrow yx - 4x = y \Rightarrow x(y-4) = y \Rightarrow x = \frac{y}{y-4}.

Thus, f1(x)=xx4f^{-1}(x) = \frac{x}{x-4}.

(ii) fg(x)=f(g(x))

=f(x4)=4(x4)(x4)1

=4(x4)x5f \circ g (x) = f(g(x)) = f(x-4) = \frac{4(x-4)}{(x-4)-1} = \frac{4(x-4)}{x-5}.

Set y=4(x4)x5y = \frac{4(x-4)}{x-5}.

Solve for xx: y(x5)=4x16

yx5y=4x16

yx4x=5y16

x(y4)=5y16

x=5y16y4y(x-5) = 4x - 16 \Rightarrow yx - 5y = 4x - 16 \Rightarrow yx - 4x = 5y - 16 \Rightarrow x(y-4) = 5y - 16 \Rightarrow x = \frac{5y - 16}{y-4}.

Thus, (fg)1(x)=5x16x4(f \circ g)^{-1}(x) = \frac{5x - 16}{x - 4}.


d) Given that f(x)=2x212x+3f(x) = 2x^2 - 12x + 3 quadratic function.
(i) Complete the square of quadratic functions.
(ii) Hence sketch the graph of the function f(x)=2x212x+3f(x) = |2x^2 - 12x + 3|, showing clearly the y – intercepts, turning point and line of symmetry.

Answer:
(i) f(x)=2(x3)215f(x) = 2(x - 3)^2 - 15
(ii)

  • y-intercept: (0, 3)
  • x-intercepts: (6302,0)\left( \frac{6 - \sqrt{30}}{2}, 0 \right), (6+302,0)\left( \frac{6 + \sqrt{30}}{2}, 0 \right) (approx (0.26, 0), (5.74, 0))
  • Turning points: Minima at x-intercepts (y=0), maximum at (3, 15)
  • Line of symmetry: x=3x = 3
  • Graph: W-shaped curve.

Explanation:


(i)

(i) f(x)=2(x26x)+3

=2(x26x+99)+3

=2((x3)29)+3

=2(x3)218+3

=2(x3)215f(x) = 2(x^2 - 6x) + 3 = 2(x^2 - 6x + 9 - 9) + 3 = 2((x-3)^2 - 9) + 3 = 2(x-3)^2 - 18 + 3 = 2(x-3)^2 - 15.

(ii)

  • Original function: parabola opening upwards, vertex (3, -15).
  • f(x)|f(x)|: Reflect parts below x-axis (where f(x)<0f(x) < 0) above x-axis.
  • f(x) < 0 between roots of 2x212x+3=02x^2 - 12x + 3 = 0:

x=12±144244

=12±1204

=12±2304

=6±302x = \frac{12 \pm \sqrt{144 - 24}}{4} = \frac{12 \pm \sqrt{120}}{4} = \frac{12 \pm 2\sqrt{30}}{4} = \frac{6 \pm \sqrt{30}}{2}
Approx x0.26,5.74x \approx 0.26, 5.74.

  • y-intercept: f(0)=3f(0) = 3, so f(0)=3|f(0)| = 3, point (0, 3).
  • Turning points:
    • Minima at x-intercepts (y=0).
    • Maximum at vertex of original parabola, but reflected: (3, | -15 |) = (3, 15).
  • Line of symmetry: Original vertex at x=3, and roots symmetric about x=3, so symmetry line x=3x = 3.
  • Sketch:
    • From left, decreases to (0.26, 0), rises to (3, 15), falls to (5.74, 0), then rises.
    • For x<0.26x < 0.26 and x>5.74x > 5.74, same as original parabola.


e) Prove the identity 1cosx+1+11cosx=2csc2x\frac{1}{\cos x+1} + \frac{1}{1-\cos x} = 2 \csc^2 x

Answer:

Left side:
1cosx+1+11cosx=1cosx+11cosx1\frac{1}{\cos x+1} + \frac{1}{1-\cos x} = \frac{1}{\cos x+1} - \frac{1}{\cos x-1} 

Common denominator: (cosx+1)(cosx1)=cos2x1=sin2x(\cos x+1)(\cos x-1) = \cos^2 x - 1 = -\sin^2 x.


(cosx1)(cosx+1)sin2x

=2sin2x

=2sin2x

=2csc2x\frac{ (\cos x-1) - (\cos x+1) }{ -\sin^2 x } = \frac{ -2 }{ -\sin^2 x } = \frac{2}{\sin^2 x} = 2 \csc^2 x


QUESTION FIVE

a) State the following
(i) The remainder theorem
(ii) The polynomial of degree 8 and give your own example

Answer:
(i) If a polynomial f(x)f(x) is divided by xcx - c, the remainder is f(c)f(c).
(ii) A polynomial of degree 8 has the highest power of x as 8. Example: x8+3x25x^8 + 3x^2 - 5.


b) Express the following as partial fractions
(i) 5x1(x+1)(x2)\frac{5x-1}{(x+1)(x-2)}
(ii) x22x1(x1)2(x2+1)\frac{x^2 - 2x - 1}{(x-1)^2(x^2+1)}

Answer:
(i) 2x+1+3x2\frac{2}{x+1} + \frac{3}{x-2}

(ii) 1x11(x1)2+1xx2+1\frac{1}{x-1} - \frac{1}{(x-1)^2} + \frac{1-x}{x^2+1}

Explanation:
(i)

Assume 5x1(x+1)(x2)=Ax+1+Bx2\frac{5x-1}{(x+1)(x-2)} = \frac{A}{x+1} + \frac{B}{x-2}.

Then 5x1=A(x2)+B(x+1)5x-1 = A(x-2) + B(x+1).

Set x=1x = -1: 5(1)1=A(3)

6=3A

A=25(-1)-1 = A(-3) \Rightarrow -6 = -3A \Rightarrow A = 2.

Set x=2x = 2: 5(2)1=B(3)

9=3B

B=35(2)-1 = B(3) \Rightarrow 9 = 3B \Rightarrow B = 3.

Thus, 2x+1+3x2\frac{2}{x+1} + \frac{3}{x-2}.



(ii)  Assume x22x1(x1)2(x2+1)=Ax1+B(x1)2+Cx+Dx2+1\frac{x^2 - 2x - 1}{(x-1)^2(x^2+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{Cx+D}{x^2+1}.

Then x22x1=A(x1)(x2+1)+B(x2+1)+(Cx+D)(x1)2x^2 - 2x - 1 = A(x-1)(x^2+1) + B(x^2+1) + (Cx+D)(x-1)^2.

Set x=1x = 1: 121=B(1+1)

2=2B

B=11 - 2 - 1 = B(1+1) \Rightarrow -2 = 2B \Rightarrow B = -1.

Compare coefficients:

Let x=0x = 0: 1=A(1)(1)+(1)(1)+D(1)

1=A1+DD=A-1 = A(-1)(1) + (-1)(1) + D(1) \Rightarrow -1 = -A -1 + D \Rightarrow D = A.

Let x=2x = 2: 441=A(1)(5)+(1)(5)+(2C+D)(1)

1=5A5+2C+D4 - 4 - 1 = A(1)(5) + (-1)(5) + (2C+D)(1) \Rightarrow -1 = 5A -5 + 2C + D.


With D=AD = A, 1=6A+2C5

6A+2C=4

3A+C=2-1 = 6A + 2C -5 \Rightarrow 6A + 2C = 4 \Rightarrow 3A + C = 2     equestion(1).

Let x=1x = -1: 1+21=A(2)(2)+(1)(2)+(C+D)(4)

2=4A24C+4D1 + 2 - 1 = A(-2)(2) + (-1)(2) + (-C+D)(4) \Rightarrow 2 = -4A -2 -4C + 4D.
With D=AD = A, 2=4A24C+4A

2=24C

C=12 = -4A -2 -4C + 4A \Rightarrow 2 = -2 -4C \Rightarrow C = -1.

From equestion(1): 3A1=2

3A=3

A=13A - 1 = 2 \Rightarrow 3A = 3 \Rightarrow A = 1, then D=1D = 1.

Thus, 1x11(x1)2+x+1x2+1=1x11(x1)2+1xx2+1\frac{1}{x-1} - \frac{1}{(x-1)^2} + \frac{-x+1}{x^2+1} = \frac{1}{x-1} - \frac{1}{(x-1)^2} + \frac{1-x}{x^2+1}.


c) Given that log2x+2log4y=4\log_2 x + 2\log_4 y = 4,
(i) Show that xy=16xy = 16.
(ii) Hence solve for xx and yy given that log10(x+y)=1\log_{10}(x+y) = 1.

Answer:
(i) Shown below.
(ii) Solutions: (x,y)=(2,8)(x,y) = (2,8) or (8,2)(8,2).

Explanation:

(i)

2log4y=log4(y2)

=log2(y2)log24

=2log2y2

=log2y2 \log_4 y = \log_4 (y^2) = \frac{\log_2 (y^2)}{\log_2 4} = \frac{2 \log_2 y}{2} = \log_2 y.

So log2x+log2y=log2(xy)=4

xy=24=16\log_2 x + \log_2 y = \log_2 (xy) = 4 \Rightarrow xy = 2^4 = 16.


(ii)

log10(x+y)=1

x+y=101=10\log_{10}(x+y) = 1 \Rightarrow x+y = 10^1 = 10.

Solve xy=16xy = 16, x+y=10x+y = 10: Quadratic equation t210t+16=0t^2 - 10t + 16 = 0.

Factors: (t2)(t8)=0(t-2)(t-8) = 0, so t=2t = 2 or 88.

Solutions: (x,y)=(2,8)(x,y) = (2,8) or (8,2)(8,2).

OR LETS DO THIS DOCTORS 

🔹 Given:

log2x+2log4y=4\log_2 x + 2\log_4 y = 4


✅ Step 1: Convert all logs to the same base

We’ll convert log4y\log_4 y to base 2 using the identity:

logba=logkalogkb\log_b a = \frac{\log_k a}{\log_k b}

So:

log4y=log2ylog24=log2y2\log_4 y = \frac{\log_2 y}{\log_2 4} = \frac{\log_2 y}{2}

Now substitute into the original equation:

log2x+2(log2y2)=4log2x+log2y=4\log_2 x + 2 \cdot \left( \frac{\log_2 y}{2} \right) = 4 \Rightarrow \log_2 x + \log_2 y = 4


✅ Step 2: Combine logs

log2x+log2y=log2(xy)\log_2 x + \log_2 y = \log_2(xy)

So:

log2(xy)=4xy=24=16\log_2(xy) = 4 \Rightarrow xy = 2^4 = \boxed{16}


🔹 Part (ii): Solve for xx and yy given:

log10(x+y)=1\log_{10}(x + y) = 1


✅ Step 3: Convert log to exponential form

log10(x+y)=1x+y=101=10\log_{10}(x + y) = 1 \Rightarrow x + y = 10^1 = 10


✅ Step 4: Use system of equations

We now have:

  1. xy=16xy = 16
  2. x+y=10x + y = 10

Let’s solve this system using substitution or quadratic method.


✅ Step 5: Use quadratic equation

Let’s assume xx and yy are roots of a quadratic:

t2(x+y)t+xy=0t210t+16=0t^2 - (x + y)t + xy = 0 \Rightarrow t^2 - 10t + 16 = 0

Solve using quadratic formula:

t=10±(10)24(1)(16)2(1)=10±100642=10±362=10±62t = \frac{10 \pm \sqrt{(-10)^2 - 4(1)(16)}}{2(1)} = \frac{10 \pm \sqrt{100 - 64}}{2} = \frac{10 \pm \sqrt{36}}{2} = \frac{10 \pm 6}{2}

So:

  • t=10+62=8t = \frac{10 + 6}{2} = 8
  • t=1062=2t = \frac{10 - 6}{2} = 2

✅ Final Answer:

  • x=8,y=2x = 8, y = 2 or x=2,y=8x = 2, y = 8
  • So: (x,y)=(8,2) or (2,8)

d) Find the value of the following trigonometric ratios without using a calculator
(i) sin75\sin 75^\circ
(ii) secπ12\sec \frac{\pi}{12}

Answer:
(i) 6+24\frac{\sqrt{6} + \sqrt{2}}{4}
(ii) 62\sqrt{6} - \sqrt{2}

Explanation:
(i)

sin75=sin(45+30)

=sin45cos30+cos45sin30

=(22)(32)+(22)(12)

=64+24

=6+24\sin 75^\circ = \sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ = \left( \frac{\sqrt{2}}{2} \right) \left( \frac{\sqrt{3}}{2} \right) + \left( \frac{\sqrt{2}}{2} \right) \left( \frac{1}{2} \right) = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}.


(ii)

secπ12=1cosπ12\sec \frac{\pi}{12} = \frac{1}{\cos \frac{\pi}{12}}.

cosπ12=cos15

=cos(4530)

=cos45cos30+sin45sin30

=(22)(32)+(22)(12)

=64+24=6+24\cos \frac{\pi}{12} = \cos 15^\circ = \cos(45^\circ - 30^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ = \left( \frac{\sqrt{2}}{2} \right) \left( \frac{\sqrt{3}}{2} \right) + \left( \frac{\sqrt{2}}{2} \right) \left( \frac{1}{2} \right) = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}.

secπ12=46+2\sec \frac{\pi}{12} = \frac{4}{\sqrt{6} + \sqrt{2}}. Rationalize:


46+2X6262

=4(62)62

=4(62)4

=62\frac{4}{\sqrt{6} + \sqrt{2}} \cdot \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} - \sqrt{2}} = \frac{4(\sqrt{6} - \sqrt{2})}{6 - 2} = \frac{4(\sqrt{6} - \sqrt{2})}{4} = \sqrt{6} - \sqrt{2}.

LETS DO THIS DOCTORS ONLY FOR SLOW LEARNERS LIKE YOU 😄😂🤣

🔹 Part (i): Find sin75\sin 75^\circ

We’ll use the angle addition identity:

sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B

Let’s write 75=45+3075^\circ = 45^\circ + 30^\circ

So:

sin75=sin(45+30)=sin45cos30+cos45sin30\sin 75^\circ = \sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ

Now recall exact values:

Angle sinθ\sin \theta cosθ\cos \theta
3030^\circ 12\frac{1}{2} 32\frac{\sqrt{3}}{2}
4545^\circ 22\frac{\sqrt{2}}{2} 22\frac{\sqrt{2}}{2}

Substitute:

sin75=(22x32)+(22x12)

=64+24

=6+24\sin 75^\circ = \left( \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} \right) + \left( \frac{\sqrt{2}}{2} \cdot \frac{1}{2} \right) = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}


✅ Final Answer:

sin75=6+24\boxed{\sin 75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}}


🔹 Part (ii): Find sec(π12)\sec\left(\frac{\pi}{12}\right)

Step 1: Convert to degrees

π12 radians=18012=15\frac{\pi}{12} \text{ radians} = \frac{180^\circ}{12} = 15^\circ

So:

sec(π12)=sec15=1cos15\sec\left(\frac{\pi}{12}\right) = \sec 15^\circ = \frac{1}{\cos 15^\circ}


Step 2: Use angle subtraction identity

cos(AB)=cosAcosB+sinAsinB\cos(A - B) = \cos A \cos B + \sin A \sin B

Let 15=453015^\circ = 45^\circ - 30^\circ

So:

cos15=cos(4530)=cos45cos30+sin45sin30\cos 15^\circ = \cos(45^\circ - 30^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ

Use known values:

  • cos45=22\cos 45^\circ = \frac{\sqrt{2}}{2}
  • cos30=32\cos 30^\circ = \frac{\sqrt{3}}{2}
  • sin45=22\sin 45^\circ = \frac{\sqrt{2}}{2}
  • sin30=12\sin 30^\circ = \frac{1}{2}

Substitute:

cos15=(22x32)+(22x12)

=64+24

=6+24\cos 15^\circ = \left( \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} \right) + \left( \frac{\sqrt{2}}{2} \cdot \frac{1}{2} \right) = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}

cos 15^\circ = \left( \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} \right) + \left( \frac{\sqrt{2}}{2} \cdot \frac{1}{2} \right) = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2So:

sec15=1cos15=16+24

=46+2\sec 15^\circ = \frac{1}{\cos 15^\circ} = \frac{1}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{4}{\sqrt{6} + \sqrt{2}}


✅ Final Answer:

sec(π12)=46+2

BUT Dr. Microbiota wa last 😄😂🤣


e) Solve the following equations
(i) sinA3cosA=0\sin A - \sqrt{3} \cos A = 0
(ii) 2cosAsinA+2sinA+cosA+1=02\cos A \sin A + 2 \sin A + \cos A + 1 = 0

Answer:
(i) A=π3+kπA = \frac{\pi}{3} + k\pi, kZk \in \mathbb{Z}
(ii) A=π+2kπA = \pi + 2k\pi, 7π6+2kπ\frac{7\pi}{6} + 2k\pi, 11π6+2kπ\frac{11\pi}{6} + 2k\pi, kZk \in \mathbb{Z}

Explanation:
(i)

  • sinA=3cosAtanA=3\sin A = \sqrt{3} \cos A \Rightarrow \tan A = \sqrt{3}.
  • Solutions: A=π3+kπA = \frac{\pi}{3} + k\pi (since period of tan is π).

(ii)

  • Factor:
    2cosAsinA+2sinA+cosA+1=(2sinA+1)(cosA+1)=02 \cos A \sin A + 2 \sin A + \cos A + 1 = (2 \sin A + 1)(\cos A + 1) = 0
    (Grouping: (2cosAsinA+cosA)+(2sinA+1)=cosA(2sinA+1)+1(2sinA+1)(2 \cos A \sin A + \cos A) + (2 \sin A + 1) = \cos A (2 \sin A + 1) + 1 \cdot (2 \sin A + 1)).
  • Case 1: 2sinA+1=0sinA=12A=7π6+2kπ2 \sin A + 1 = 0 \Rightarrow \sin A = -\frac{1}{2} \Rightarrow A = \frac{7\pi}{6} + 2k\pi, 11π6+2kπ\frac{11\pi}{6} + 2k\pi.
  • Case 2: cosA+1=0cosA=1A=π+2kπ\cos A + 1 = 0 \Rightarrow \cos A = -1 \Rightarrow A = \pi + 2k\pi.

🔹 Part (i): Solve

sinA3cosA=0\sin A - \sqrt{3} \cos A = 0

Step 1: Rearrange the equation

sinA=3cosA\sin A = \sqrt{3} \cos A

Step 2: Divide both sides by cosA\cos A (assuming cosA0\cos A \ne 0)

sinAcosA=3tanA=3\frac{\sin A}{\cos A} = \sqrt{3} \Rightarrow \tan A = \sqrt{3}

Step 3: Solve for AA

We know:

tanA=3A=60 or A=240\tan A = \sqrt{3} \Rightarrow A = 60^\circ \text{ or } A = 240^\circ

Because tanA=3\tan A = \sqrt{3} in Quadrant I and III


✅ Final Answer:

A=60 or 240\boxed{A = 60^\circ \text{ or } 240^\circ}


🔹 Part (ii): Solve

2cosAsinA+2sinA+cosA+1=02\cos A \sin A + 2\sin A + \cos A + 1 = 0


Step 1: Group terms

Let’s write it as:

2sinAcosA+2sinA+cosA+1=02\sin A \cos A + 2\sin A + \cos A + 1 = 0

Group terms with sinA\sin A:

2sinA(cosA+1)+(cosA+1)=02\sin A(\cos A + 1) + (\cos A + 1) = 0

Factor out (cosA+1)(\cos A + 1):

(2sinA+1)(cosA+1)=0(2\sin A + 1)(\cos A + 1) = 0


Step 2: Solve each factor

Case 1: 2sinA+1=02\sin A + 1 = 0

sinA=12A=210 or 330\sin A = -\frac{1}{2} \Rightarrow A = 210^\circ \text{ or } 330^\circ

Because sinA=12\sin A = -\frac{1}{2} in Quadrant III and IV


Case 2: cosA+1=0\cos A + 1 = 0

cosA=1A=180\cos A = -1 \Rightarrow A = 180^\circ


✅ Final Answer:

A=180, 210, or 330


@Dr. Microbiota

END OF SOLUTIONS