INTRODUCTION TO MATHEMATICAL METHODS FINAL EXAM JULY INTAKE 2023
DATE : 17th November, 2023
QUESTION ONE
a) Define
(i) A Power set
(ii) Disjoint set
Answer:
(i) The power set of a set is the set of all possible subsets of , including the empty set and itself. It is denoted by .
(ii) Two sets are disjoint if they have no elements in common, i.e., their intersection is the empty set.
b) Let be the universal set and set , and . Find
(i)
(ii)
Answer:
(i)
(ii)
Explanation:
(i)
- Union : , . The union combines intervals: from to ,
excluding (since is excluded in , but includes values up to but not including ,
and is included via ). Thus, .
- Complement : , so in is .
- Intersection: is the overlap between and . This gives .
(ii)
- Set difference .
- (complement of in ).
- , so (since and are excluded in , but is included).
c) Given that , Let set and and find
(i)
(ii)
Answer:
(i)
(ii)
Explanation:
(i)
- (common elements).
- .
- Union: .
(ii)
- (same as ).
- .
- Intersection with : .
d) For each of the following
(i) Write the following in roster form.
(ii) Let set and , find
(iii) Let set and , verify
Answer:
(i) (empty set).
(ii)
.
(iii) holds true.
Explanation:
(i)
- For any integer , is even (product of consecutive integers),
so is even. Thus, no integers satisfy the condition, and .
(ii)
- .
- Power set has subsets, listed above.
(iii)
- .
- , , so .
- .
- All elements of are in , so the subset relation holds.
e) Write the given expression in terms of , and to any base
Answer:
Explanation:
- Simplify radicals:
- .
- .
- .
- Expression becomes .
- Apply logarithm properties:
- .
QUESTION TWO
a) Define
(i) A binary operation
(ii) An even function
Answer:
(i) A binary operation on a set is a function that assigns to each ordered pair an element .
(ii) A function is even if for all in its domain. The graph is symmetric about the y-axis.
b) For each of the following
(i) Simplify
(ii) Use the Venn diagram to represent the sets
Answer:
(i)
(ii) Shade the region corresponding to except the part in but not in .
Explanation:
(i)
- Apply set identities:
- Distribute: , and , so .
- Then (De Morgan's law).
- Simplified form: .
(ii)
- , so .
- .
- In a Venn diagram for sets , shade:
- All of not in (i.e., ).
- All of in (i.e., ).
- This is equivalent to shading except the region where is in but not in (i.e., ).
c) Rationalize the denominators for each of the following
(i)
(ii)
Answer:
(i)
(ii)
Explanation:
(i)
- Multiply numerator and denominator by conjugate :
.
(ii)
- Multiply numerator and denominator by conjugate :
.
d) Express the following numbers in the form where p and q are integers with no common factors, .
(i) (repeating decimal)
(ii) (repeating decimal)
Answer:
(i)
(ii)
Explanation:
(i)
- Let
- Then and .
- Subtract:
so ,
.
- GCD of 61 and 30 is 1, so .
(ii)
- Let
- Then .
- Subtract: ,
- so ,
- .
e) Find the domain of . Hence sketch its graph show all intercepts and asymptotic lines.
Answer:
- Domain: .
- Intercepts: x-intercept at , y-intercept at .
- Asymptotes: Vertical asymptote at , horizontal asymptote at .
- Graph: See sketch description below.
Explanation:

QUESTION THREE
a) Define
(i) Power set
(ii) Asymptotic line of a curve
Answer:
(i) The power set of a set is the set of all subsets of , including the empty set and itself.
(ii) An asymptote of a curve is a line such that the distance between the curve and the line approaches zero as one or both coordinates tend to infinity.
b) Let * be a binary operation on a given set.
(i) Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation, give justification for your answer on Z+, define * by a * b = a - b + 3.
(ii) Let * be the binary operation on N given by a * b = H.C.F of a and b. Find .
Answer:
(i) Not a binary operation. Justification: Result not always in (e.g., ).
(ii) 5
Explanation:
(i)
- For (positive integers), .
- Example: , .
- Since the result is not always in , it is not a binary operation.
(ii)
- (since , ).
- Then .
- Thus, .
c) For the following
(i) In the quadratic equation, , find the values of k for which this equation has two distinct real roots.
(ii) Given that the roots of the equation are α and β. Find an equation whose roots are and .
Answer:
(i) or (i.e., ).
(ii) One possible equation is (or ).
Explanation:
(i)
- Discriminant
.
so , .
- Parabola opens upwards, so when or .
(ii)
- Simplify equation:
.
- Roots α, β: Sum , product .
- New roots: , .
- Product
.
.
,
so , and sum .
- Depending on labeling, sum is or , but product is fixed. For example,
with , , sum is .
- Equation: ,
so one possibility is .
d) Solve the following without using calculator or log table.
(i)
(ii)
Answer:
(i)
(ii)
Explanation:
(i)
- Combine logs: .
- So .
- Expand:
.
.
- Check domain: and , so . valid.
(ii)
- Simplify: .
- Convert base:
.
- So
.
- Check domain: and , so . valid.
e) Determine the amplitude, phase shift, vertical shift and period for the following function and sketch the graph in the interval given
Answer:
- Amplitude: 3
- Period:
- Phase shift: to the right
- Vertical shift: 2
- Graph: See sketch description below.
Explanation:
- Standard form: , here .
- Amplitude: .
- Period: .
- Phase shift: Rewrite as , so (right shift).
- Vertical shift: .
- Graph Sketch:
- Range: (since , then add 2).
- Key points (x, f(x)):
- : , .
- : , .
- : , .
- : , .
- : , .
- : , .
- : , .
- : , .
- : , .
- : , , .
- Behavior: Periodic with period , oscillates between -1 and 5.
- Shape: Starts at , decreases to , increases to , decreases to , etc.
- In interval , plot points and connect smoothly.

QUESTION FOUR
a) State
(i) The remainder theorem
(ii) The discriminant of quadratic function
Answer:
(i) If a polynomial is divided by , the remainder is .
(ii) For , the discriminant is , which determines the nature of the roots.
b) Given that is a polynomial of degree three.
(i) Factorise completely for which .
(ii) Find roots of .
(iii) Sketch the graph of .
Answer:
(i)
(ii) Roots:
(iii) Graph: Cubic with roots at -3, -2, 4; y-intercept at (0, -24); local max and min.
Explanation:
(i)
- Possible rational roots: factors of 24. Test : , so is a factor.
- Synthetic division:
- Quotient: .
- Thus, .
OR LETS DO THIS DOCTORS
We aim to factorize completely.
✅ Step 1: Group terms
Group the polynomial in pairs:
Factor each group:
This doesn’t help directly, so we’ll try Rational Root Theorem.
✅ Step 2: Use Rational Root Theorem
Try rational roots of the form:
Try :
✅ Step 3: Use synthetic division to divide by
We divide:
Synthetic division:
-2 | 1 1 -14 -24
| -2 2 24
-------------------
1 -1 -12 0
So:
✅ Step 4: Factor the quadratic
✅ Final Factorization:
✅ Final Answer:
(ii)
- Roots: , , ⇒ .
(iii)
- y-intercept: .
- Behavior: As , ; as , .
- Local extrema: . Discriminant , roots .
- : at , (local max); at , (local min).
- Sketch: Crosses x-axis at -3, -2, 4; y-axis at (0, -24); local max near (-2.52, 20.6), local min near (1.85, -39.7).

c) Let the functions and . Find
(i)
(ii)
Answer:
(i)
(ii)
Explanation:
(i)
(i) Set .
Solve for :
.
Thus, .
(ii)
=f(x−4)=4(x−4)(x−4)−1
=4(x−4)x−5f \circ g (x) = f(g(x)) = f(x-4) = \frac{4(x-4)}{(x-4)-1} = \frac{4(x-4)}{x-5}.
Set y=4(x−4)x−5y = \frac{4(x-4)}{x-5}.
Solve for xx: y(x−5)=4x−16
⇒yx−5y=4x−16
⇒yx−4x=5y−16
⇒x(y−4)=5y−16
⇒x=5y−16y−4y(x-5) = 4x - 16 \Rightarrow yx - 5y = 4x - 16 \Rightarrow yx - 4x = 5y - 16 \Rightarrow x(y-4) = 5y - 16 \Rightarrow x = \frac{5y - 16}{y-4}.
Thus, (f∘g)−1(x)=5x−16x−4(f \circ g)^{-1}(x) = \frac{5x - 16}{x - 4}.
d) Given that f(x)=2x2−12x+3f(x) = 2x^2 - 12x + 3 quadratic function.
(i) Complete the square of quadratic functions.
(ii) Hence sketch the graph of the function f(x)=∣2x2−12x+3∣f(x) = |2x^2 - 12x + 3|, showing clearly the y – intercepts, turning point and line of symmetry.
Answer:
(i) f(x)=2(x−3)2−15f(x) = 2(x - 3)^2 - 15
(ii)
- y-intercept: (0, 3)
- x-intercepts: (6−302,0)\left( \frac{6 - \sqrt{30}}{2}, 0 \right), (6+302,0)\left( \frac{6 + \sqrt{30}}{2}, 0 \right) (approx (0.26, 0), (5.74, 0))
- Turning points: Minima at x-intercepts (y=0), maximum at (3, 15)
- Line of symmetry: x=3x = 3
- Graph: W-shaped curve.
Explanation:
(i)
(i) f(x)=2(x2−6x)+3
=2(x2−6x+9−9)+3
=2((x−3)2−9)+3
=2(x−3)2−18+3
=2(x−3)2−15f(x) = 2(x^2 - 6x) + 3 = 2(x^2 - 6x + 9 - 9) + 3 = 2((x-3)^2 - 9) + 3 = 2(x-3)^2 - 18 + 3 = 2(x-3)^2 - 15.
(ii)
- Original function: parabola opening upwards, vertex (3, -15).
- ∣f(x)∣|f(x)|: Reflect parts below x-axis (where f(x)<0f(x) < 0) above x-axis.
- f(x) < 0 between roots of 2x2−12x+3=02x^2 - 12x + 3 = 0:
x=12±144−244
=12±1204
=12±2304
=6±302x = \frac{12 \pm \sqrt{144 - 24}}{4} = \frac{12 \pm \sqrt{120}}{4} = \frac{12 \pm 2\sqrt{30}}{4} = \frac{6 \pm \sqrt{30}}{2}
Approx x≈0.26,5.74x \approx 0.26, 5.74.
- y-intercept: f(0)=3f(0) = 3, so ∣f(0)∣=3|f(0)| = 3, point (0, 3).
- Turning points:
- Minima at x-intercepts (y=0).
- Maximum at vertex of original parabola, but reflected: (3, | -15 |) = (3, 15).
- Line of symmetry: Original vertex at x=3, and roots symmetric about x=3, so symmetry line x=3x = 3.
- Sketch:
- From left, decreases to (0.26, 0), rises to (3, 15), falls to (5.74, 0), then rises.
- For x<0.26x < 0.26 and x>5.74x > 5.74, same as original parabola.

e) Prove the identity 1cosx+1+11−cosx=2csc2x\frac{1}{\cos x+1} + \frac{1}{1-\cos x} = 2 \csc^2 x
Answer:
Left side:
1cosx+1+11−cosx=1cosx+1−1cosx−1\frac{1}{\cos x+1} + \frac{1}{1-\cos x} = \frac{1}{\cos x+1} - \frac{1}{\cos x-1}
Common denominator: (cosx+1)(cosx−1)=cos2x−1=−sin2x(\cos x+1)(\cos x-1) = \cos^2 x - 1 = -\sin^2 x.
(cosx−1)−(cosx+1)−sin2x
=−2−sin2x
=2sin2x
=2csc2x\frac{ (\cos x-1) - (\cos x+1) }{ -\sin^2 x } = \frac{ -2 }{ -\sin^2 x } = \frac{2}{\sin^2 x} = 2 \csc^2 x
QUESTION FIVE
a) State the following
(i) The remainder theorem
(ii) The polynomial of degree 8 and give your own example
Answer:
(i) If a polynomial f(x)f(x) is divided by x−cx - c, the remainder is f(c)f(c).
(ii) A polynomial of degree 8 has the highest power of x as 8. Example: x8+3x2−5x^8 + 3x^2 - 5.
b) Express the following as partial fractions
(i) 5x−1(x+1)(x−2)\frac{5x-1}{(x+1)(x-2)}
(ii) x2−2x−1(x−1)2(x2+1)\frac{x^2 - 2x - 1}{(x-1)^2(x^2+1)}
Answer:
(i) 2x+1+3x−2\frac{2}{x+1} + \frac{3}{x-2}
(ii) 1x−1−1(x−1)2+1−xx2+1\frac{1}{x-1} - \frac{1}{(x-1)^2} + \frac{1-x}{x^2+1}
Explanation:
(i)
Assume 5x−1(x+1)(x−2)=Ax+1+Bx−2\frac{5x-1}{(x+1)(x-2)} = \frac{A}{x+1} + \frac{B}{x-2}.
Then 5x−1=A(x−2)+B(x+1)5x-1 = A(x-2) + B(x+1).
Set x=−1x = -1: 5(−1)−1=A(−3)
⇒−6=−3A
⇒A=25(-1)-1 = A(-3) \Rightarrow -6 = -3A \Rightarrow A = 2.
Set x=2x = 2: 5(2)−1=B(3)
⇒9=3B
⇒B=35(2)-1 = B(3) \Rightarrow 9 = 3B \Rightarrow B = 3.
Thus, 2x+1+3x−2\frac{2}{x+1} + \frac{3}{x-2}.
(ii) Assume x2−2x−1(x−1)2(x2+1)=Ax−1+B(x−1)2+Cx+Dx2+1\frac{x^2 - 2x - 1}{(x-1)^2(x^2+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{Cx+D}{x^2+1}.
Then x2−2x−1=A(x−1)(x2+1)+B(x2+1)+(Cx+D)(x−1)2x^2 - 2x - 1 = A(x-1)(x^2+1) + B(x^2+1) + (Cx+D)(x-1)^2.
Set x=1x = 1: 1−2−1=B(1+1)
⇒−2=2B
⇒B=−11 - 2 - 1 = B(1+1) \Rightarrow -2 = 2B \Rightarrow B = -1.
Compare coefficients:
Let x=0x = 0: −1=A(−1)(1)+(−1)(1)+D(1)
⇒−1=−A−1+D⇒D=A-1 = A(-1)(1) + (-1)(1) + D(1) \Rightarrow -1 = -A -1 + D \Rightarrow D = A.
Let x=2x = 2: 4−4−1=A(1)(5)+(−1)(5)+(2C+D)(1)
⇒−1=5A−5+2C+D4 - 4 - 1 = A(1)(5) + (-1)(5) + (2C+D)(1) \Rightarrow -1 = 5A -5 + 2C + D.
With D=AD = A, −1=6A+2C−5
⇒6A+2C=4
⇒3A+C=2-1 = 6A + 2C -5 \Rightarrow 6A + 2C = 4 \Rightarrow 3A + C = 2 equestion(1).
Let x=−1x = -1: 1+2−1=A(−2)(2)+(−1)(2)+(−C+D)(4)
⇒2=−4A−2−4C+4D1 + 2 - 1 = A(-2)(2) + (-1)(2) + (-C+D)(4) \Rightarrow 2 = -4A -2 -4C + 4D.
With D=AD = A, 2=−4A−2−4C+4A
⇒2=−2−4C
⇒C=−12 = -4A -2 -4C + 4A \Rightarrow 2 = -2 -4C \Rightarrow C = -1.
From equestion(1): 3A−1=2
⇒3A=3
⇒A=13A - 1 = 2 \Rightarrow 3A = 3 \Rightarrow A = 1, then D=1D = 1.
Thus, 1x−1−1(x−1)2+−x+1x2+1=1x−1−1(x−1)2+1−xx2+1\frac{1}{x-1} - \frac{1}{(x-1)^2} + \frac{-x+1}{x^2+1} = \frac{1}{x-1} - \frac{1}{(x-1)^2} + \frac{1-x}{x^2+1}.
c) Given that log2x+2log4y=4\log_2 x + 2\log_4 y = 4,
(i) Show that xy=16xy = 16.
(ii) Hence solve for xx and yy given that log10(x+y)=1\log_{10}(x+y) = 1.
Answer:
(i) Shown below.
(ii) Solutions: (x,y)=(2,8)(x,y) = (2,8) or (8,2)(8,2).
Explanation:
(i)
2log4y=log4(y2)
=log2(y2)log24
=2log2y2
=log2y2 \log_4 y = \log_4 (y^2) = \frac{\log_2 (y^2)}{\log_2 4} = \frac{2 \log_2 y}{2} = \log_2 y.
So log2x+log2y=log2(xy)=4
⇒xy=24=16\log_2 x + \log_2 y = \log_2 (xy) = 4 \Rightarrow xy = 2^4 = 16.
(ii)
log10(x+y)=1
⇒x+y=101=10\log_{10}(x+y) = 1 \Rightarrow x+y = 10^1 = 10.
Solve xy=16xy = 16, x+y=10x+y = 10: Quadratic equation t2−10t+16=0t^2 - 10t + 16 = 0.
Factors: (t−2)(t−8)=0(t-2)(t-8) = 0, so t=2t = 2 or 88.
Solutions: (x,y)=(2,8)(x,y) = (2,8) or (8,2)(8,2).
OR LETS DO THIS DOCTORS
🔹 Given:
log2x+2log4y=4\log_2 x + 2\log_4 y = 4
✅ Step 1: Convert all logs to the same base
We’ll convert log4y\log_4 y to base 2 using the identity:
logba=logkalogkb\log_b a = \frac{\log_k a}{\log_k b}
So:
log4y=log2ylog24=log2y2\log_4 y = \frac{\log_2 y}{\log_2 4} = \frac{\log_2 y}{2}
Now substitute into the original equation:
log2x+2⋅(log2y2)=4⇒log2x+log2y=4\log_2 x + 2 \cdot \left( \frac{\log_2 y}{2} \right) = 4
\Rightarrow \log_2 x + \log_2 y = 4
✅ Step 2: Combine logs
log2x+log2y=log2(xy)\log_2 x + \log_2 y = \log_2(xy)
So:
log2(xy)=4⇒xy=24=16\log_2(xy) = 4
\Rightarrow xy = 2^4 = \boxed{16}
🔹 Part (ii): Solve for xx and yy given:
log10(x+y)=1\log_{10}(x + y) = 1
✅ Step 3: Convert log to exponential form
log10(x+y)=1⇒x+y=101=10\log_{10}(x + y) = 1 \Rightarrow x + y = 10^1 = 10
✅ Step 4: Use system of equations
We now have:
- xy=16xy = 16
- x+y=10x + y = 10
Let’s solve this system using substitution or quadratic method.
✅ Step 5: Use quadratic equation
Let’s assume xx and yy are roots of a quadratic:
t2−(x+y)t+xy=0⇒t2−10t+16=0t^2 - (x + y)t + xy = 0
\Rightarrow t^2 - 10t + 16 = 0
Solve using quadratic formula:
t=10±(−10)2−4(1)(16)2(1)=10±100−642=10±362=10±62t = \frac{10 \pm \sqrt{(-10)^2 - 4(1)(16)}}{2(1)} = \frac{10 \pm \sqrt{100 - 64}}{2}
= \frac{10 \pm \sqrt{36}}{2} = \frac{10 \pm 6}{2}
So:
- t=10+62=8t = \frac{10 + 6}{2} = 8
- t=10−62=2t = \frac{10 - 6}{2} = 2
✅ Final Answer:
- x=8,y=2x = 8, y = 2 or x=2,y=8x = 2, y = 8
- So:
(x,y)=(8,2) or (2,8)
d) Find the value of the following trigonometric ratios without using a calculator
(i) sin75∘\sin 75^\circ
(ii) secπ12\sec \frac{\pi}{12}
Answer:
(i) 6+24\frac{\sqrt{6} + \sqrt{2}}{4}
(ii) 6−2\sqrt{6} - \sqrt{2}
Explanation:
(i)
sin75∘=sin(45∘+30∘)
=sin45∘cos30∘+cos45∘sin30∘
=(22)(32)+(22)(12)
=64+24
=6+24\sin 75^\circ = \sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ = \left( \frac{\sqrt{2}}{2} \right) \left( \frac{\sqrt{3}}{2} \right) + \left( \frac{\sqrt{2}}{2} \right) \left( \frac{1}{2} \right) = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}.
(ii)
secπ12=1cosπ12\sec \frac{\pi}{12} = \frac{1}{\cos \frac{\pi}{12}}.
cosπ12=cos15∘
=cos(45∘−30∘)
=cos45∘cos30∘+sin45∘sin30∘
=(22)(32)+(22)(12)
=64+24=6+24\cos \frac{\pi}{12} = \cos 15^\circ = \cos(45^\circ - 30^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ = \left( \frac{\sqrt{2}}{2} \right) \left( \frac{\sqrt{3}}{2} \right) + \left( \frac{\sqrt{2}}{2} \right) \left( \frac{1}{2} \right) = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}.
secπ12=46+2\sec \frac{\pi}{12} = \frac{4}{\sqrt{6} + \sqrt{2}}. Rationalize:
46+2X6−26−2
=4(6−2)6−2
=4(6−2)4
=6−2\frac{4}{\sqrt{6} + \sqrt{2}} \cdot \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} - \sqrt{2}} = \frac{4(\sqrt{6} - \sqrt{2})}{6 - 2} = \frac{4(\sqrt{6} - \sqrt{2})}{4} = \sqrt{6} - \sqrt{2}.
LETS DO THIS DOCTORS ONLY FOR SLOW LEARNERS LIKE YOU 😄😂🤣
🔹 Part (i): Find sin75∘\sin 75^\circ
We’ll use the angle addition identity:
sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B
Let’s write 75∘=45∘+30∘75^\circ = 45^\circ + 30^\circ
So:
sin75∘=sin(45∘+30∘)=sin45∘cos30∘+cos45∘sin30∘\sin 75^\circ = \sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ
Now recall exact values:
Angle |
sinθ\sin \theta |
cosθ\cos \theta |
30∘30^\circ |
12\frac{1}{2} |
32\frac{\sqrt{3}}{2} |
45∘45^\circ |
22\frac{\sqrt{2}}{2} |
22\frac{\sqrt{2}}{2} |
Substitute:
sin75∘=(22x32)+(22x12)
=64+24
=6+24\sin 75^\circ = \left( \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} \right) + \left( \frac{\sqrt{2}}{2} \cdot \frac{1}{2} \right)
= \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}
= \frac{\sqrt{6} + \sqrt{2}}{4}
✅ Final Answer:
sin75∘=6+24\boxed{\sin 75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}}
🔹 Part (ii): Find sec(π12)\sec\left(\frac{\pi}{12}\right)
Step 1: Convert to degrees
π12 radians=180∘12=15∘\frac{\pi}{12} \text{ radians} = \frac{180^\circ}{12} = 15^\circ
So:
sec(π12)=sec15∘=1cos15∘\sec\left(\frac{\pi}{12}\right) = \sec 15^\circ = \frac{1}{\cos 15^\circ}
Step 2: Use angle subtraction identity
cos(A−B)=cosAcosB+sinAsinB\cos(A - B) = \cos A \cos B + \sin A \sin B
Let 15∘=45∘−30∘15^\circ = 45^\circ - 30^\circ
So:
cos15∘=cos(45∘−30∘)=cos45∘cos30∘+sin45∘sin30∘\cos 15^\circ = \cos(45^\circ - 30^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ
Use known values:
- cos45∘=22\cos 45^\circ = \frac{\sqrt{2}}{2}
- cos30∘=32\cos 30^\circ = \frac{\sqrt{3}}{2}
- sin45∘=22\sin 45^\circ = \frac{\sqrt{2}}{2}
- sin30∘=12\sin 30^\circ = \frac{1}{2}
Substitute:
cos15∘=(22x32)+(22x12)
=64+24
=6+24\cos 15^\circ = \left( \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} \right) + \left( \frac{\sqrt{2}}{2} \cdot \frac{1}{2} \right)
= \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}
= \frac{\sqrt{6} + \sqrt{2}}{4}
cos 15^\circ = \left( \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} \right) + \left( \frac{\sqrt{2}}{2} \cdot \frac{1}{2} \right)
= \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}
= \frac{\sqrt{6} + \sqrt{2So:
sec15∘=1cos15∘=16+24
=46+2\sec 15^\circ = \frac{1}{\cos 15^\circ} = \frac{1}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{4}{\sqrt{6} + \sqrt{2}}
✅ Final Answer:
sec(π12)=46+2
BUT Dr. Microbiota wa last 😄😂🤣
e) Solve the following equations
(i) sinA−3cosA=0\sin A - \sqrt{3} \cos A = 0
(ii) 2cosAsinA+2sinA+cosA+1=02\cos A \sin A + 2 \sin A + \cos A + 1 = 0
Answer:
(i) A=π3+kπA = \frac{\pi}{3} + k\pi, k∈Zk \in \mathbb{Z}
(ii) A=π+2kπA = \pi + 2k\pi, 7π6+2kπ\frac{7\pi}{6} + 2k\pi, 11π6+2kπ\frac{11\pi}{6} + 2k\pi, k∈Zk \in \mathbb{Z}
Explanation:
(i)
- sinA=3cosA⇒tanA=3\sin A = \sqrt{3} \cos A \Rightarrow \tan A = \sqrt{3}.
- Solutions: A=π3+kπA = \frac{\pi}{3} + k\pi (since period of tan is π).
(ii)
- Factor:
2cosAsinA+2sinA+cosA+1=(2sinA+1)(cosA+1)=02 \cos A \sin A + 2 \sin A + \cos A + 1 = (2 \sin A + 1)(\cos A + 1) = 0
(Grouping: (2cosAsinA+cosA)+(2sinA+1)=cosA(2sinA+1)+1⋅(2sinA+1)(2 \cos A \sin A + \cos A) + (2 \sin A + 1) = \cos A (2 \sin A + 1) + 1 \cdot (2 \sin A + 1)).
- Case 1: 2sinA+1=0⇒sinA=−12⇒A=7π6+2kπ2 \sin A + 1 = 0 \Rightarrow \sin A = -\frac{1}{2} \Rightarrow A = \frac{7\pi}{6} + 2k\pi, 11π6+2kπ\frac{11\pi}{6} + 2k\pi.
- Case 2: cosA+1=0⇒cosA=−1⇒A=π+2kπ\cos A + 1 = 0 \Rightarrow \cos A = -1 \Rightarrow A = \pi + 2k\pi.
🔹 Part (i): Solve
sinA−3cosA=0\sin A - \sqrt{3} \cos A = 0
Step 1: Rearrange the equation
sinA=3cosA\sin A = \sqrt{3} \cos A
Step 2: Divide both sides by cosA\cos A (assuming cosA≠0\cos A \ne 0)
sinAcosA=3⇒tanA=3\frac{\sin A}{\cos A} = \sqrt{3}
\Rightarrow \tan A = \sqrt{3}
Step 3: Solve for AA
We know:
tanA=3⇒A=60∘ or A=240∘\tan A = \sqrt{3} \Rightarrow A = 60^\circ \text{ or } A = 240^\circ
Because tanA=3\tan A = \sqrt{3} in Quadrant I and III
✅ Final Answer:
A=60∘ or 240∘\boxed{A = 60^\circ \text{ or } 240^\circ}
🔹 Part (ii): Solve
2cosAsinA+2sinA+cosA+1=02\cos A \sin A + 2\sin A + \cos A + 1 = 0
Step 1: Group terms
Let’s write it as:
2sinAcosA+2sinA+cosA+1=02\sin A \cos A + 2\sin A + \cos A + 1 = 0
Group terms with sinA\sin A:
2sinA(cosA+1)+(cosA+1)=02\sin A(\cos A + 1) + (\cos A + 1) = 0
Factor out (cosA+1)(\cos A + 1):
(2sinA+1)(cosA+1)=0(2\sin A + 1)(\cos A + 1) = 0
Step 2: Solve each factor
Case 1: 2sinA+1=02\sin A + 1 = 0
sinA=−12⇒A=210∘ or 330∘\sin A = -\frac{1}{2}
\Rightarrow A = 210^\circ \text{ or } 330^\circ
Because sinA=−12\sin A = -\frac{1}{2} in Quadrant III and IV
Case 2: cosA+1=0\cos A + 1 = 0
cosA=−1⇒A=180∘\cos A = -1 \Rightarrow A = 180^\circ
✅ Final Answer:
A=180∘, 210∘, or 330∘
@Dr. Microbiota
END OF SOLUTIONS